ابزارهای برشی

ابزارهای برشی

برای اینکه بتوان فلزات مختلف را به طور ساده تراشید، لازم است که از ابزارهای برشی مناسبی استفاده کرد تا بتوانیم در عملیات ماشین‌کاری، درست عمل کنیم؛ یعنی با انتخاب درست جنس قطعة کار و جنس ابزارهای براده‌برداری، عمر ابزار خود را افزایش بدهیم و نیز کیفیت کار خود را بالا ببریم. در این مقاله سعی شده است در دیدی کلی، انواع ابزارهای برشی را معرفی کرده و معایب و محاسن آنها را در مقایسه با هم بیان کنیم.

انواع ابزارهای برشی

عمر ابزارهای برشی به عوامل گوناگونی بستگی دارد. یکی از این عوامل، جنس خود ابزار است. انواع ابزارهای برشی عبارتند از:

۱- فولادهای تندبْر HSS  ؛

۲- آلیاژهای ریختنی کبالت؛

۳- کاربایدها؛

۴- سرامیک‌ها و سرمتها؛

۵- CBN  ؛

۶- الماس‌ها.

در هنگام انتخاب ابزار برش مناسب برای یک سری عملیات، می‌بایست به وسیلة مقایسه مشخصات فلز، آن ابزار برش را انتخاب کرد. این مشخصات شامل توجه به نکات زیر است:

·     سختی

·     مقاومت

·     کارایی در درجه حررات بالا

·     محکمی

·     مقاومت در مقابل اثرات شیمیایی

·     مقاومت در مقابل سائیدگی

·     قابلیت انتقال حرارت

·     ضریب اصطکاک

آخرین عامل، یعنی هزینة تولید باید طوری در نظر گرفته شود که قطعه دارای خواص فیزیکی لازم باشد و کمترین هزینه تولید هر قطعه را شامل گردد.

۱- فولادهای تندبُر

فولادهای تندبر (High Speed Steel)  اصولاً برای برش «رنده‌های تراش» به کار می‌روند و علاوه بر کربن، ممکن است شامل عناصر دیگری از قبیل تنگستن، مولیبدن، کروم، وانادیوم و کبالت باشند.

کربن برای حفظ سختی در درجه حرارت بالا، وانادیم موجب افزایش استحکام و مقاومت به سایش و کروم نیز به عنوان عامل بهبود چقرمگی (Toughness)  و مقاومت در مقابل سایش عمل می‌کند.

این نوع فولادها بر اساس مواد آلیاژی اصلیشان به چهار گروه تقسیم‌بندی شده‌اند:

۱- مولیبدن  ۲- مولیبدن کبالت

۳- تنگستن  ۴- تنگستن کبالت

اما چرا این نام را بر این ابزار نهاده‌اند؟

High Speed Steel ® HSS

برای پاسخ دادن به این سؤال، بهتر است با یکی دیگر از ابزارهای برشی و براده‌برداری با نام «فولادهای کربنی و آلیاژی» آشنا شویم.

کاربرد این نوع فولادها، که زمانی (حدود یک قرن پیش) عمده‌ترین جنس ابزارهای براده‌برداری بودند، به دلیل افت شدید سختی در درجه حرارتهای نسبتاً بالا (تقریباً ۲۶۰°C) و سایش زیاد، فقط به ابزارهای دستی برای براده‌برداری‌های با سرعت پایین از قبیل قلاویز و حدیده و سوهان محدود شده است.

و اما فولادهای تندبْر، برتری این نوع فولادها (تندبْر) به فولادهای کربنی، در قابلیت حفظ سختی در درجه حرارت بالاتر (۵۳۸°C  الی ۵۹۰°C) است. از این جهت، مقایسه با فولادهای کربنی به ازای طول عمر مساوی می‌توان آن را با حدود  ۲  برابر سرعت برشی به کار برد. به همین دلیل این فولادها به نام فولاد تندبر نامگذاری شده‌اند.

ابزار از جنس فولادهای تندبر مزایای زیر را نسبت به نمونه‌های دیگر دارد:

الف) ارزانتر است؛

ب) شکنندگی کمتری دارد. به همین دلیل در قطع و وصل ابزار برش بر روی قطعة کار با روامتر؟؟؟ است؛

ج) فرم‌پذیر است و به راحتی شکل می‌گیرد.

در کنار محاسن نام برده، این فولادها دارای معایبی نیز هستند. از آن جمله:

الف) نسبت به انواع دیگر در دماهای بالاتر حین ماشینکاری دوام کمتری دارند؛

ب) مواد سخت را به راحتی برش نمی‌دهند.

۲- آلیاژهای ریختنی کبالت (ابزارهای استلایتی)

این آلیاژها که مرکب از  ۲  الی  ۴  درصد کربن، ۱۴  تا  ۲۰  درصد تنگستن، ۲۵  الی  ۳۴  درصد کروم و مابقی کبالت هستند. به دلیل برخورداری از سختی زیاد و حفظ آن در درجه حرارتهای بالا و مقاومت بالا نسبت به سایش و خوردگی، ضریب اصطکاک پایین در تماس با فولاد، به عنوان یکی از مواد مناسب برای ساخت ابزارهای براده‌برداری مطرح بوده‌اند.

اگر چه سختی این آلیاژها در دمای اتاق مشابه فولادهای تندبر است؛ ولی به دلیل حفظ بهتر سختی در دماهای بالاتر، قابل استفاده در سرعتهای برشی بالاتری (تقریباً  ۲۵% سرعت بیشتر) نسبت به فولادهای تندبر هستند. خواص مکانیکی و سختی این آلیاژها با عملیات حرارتی قابل تغییر نیست.

۳- کاربایدها

اصولاً «کارباید» اصطلاحی است که به ترکیب شیمیایی فلز و کربن اطلاق می‌شود. کاربایدها خود به سه گروه تقسیم می‌شوند:

۱- سمانته  ۲- ریزدانه  ۳- پوششی

کاربایدهای سمانته نیز خود به دو گروه عمده تقسیم می‌شوند:

۱- گروه تنگستن کارباید خالص

۱- گروه تنگستن کارباید آلیاژی (که حاوی کارباید تیتانیم یا کارباید تنتالیم می‌باشد)

همچنین ابزارهای کاربایدی را در دیدی دیگر می‌توان به سه گروه دیگر تقسیم کرد:

۱- الماسه‌های یکپارچه و سخت (که از قطعات کربنی ساخته می‌شود.)

۲- الماسه‌های لحیمی (که از اتصال الماسه به یک میلة فولادی به صورت لحیمی ساخته می‌شود.)

۳- الماسه نصبی (که در بین صنعتگران به الماسه یا اینزرت مشهور است و متداول‌ترین ابزار مورد استفاده در CNC  هاست که در نگهدارنده‌های فولادی نصب می‌شوند.)

مزایای کاربایدها را می‌توان در موارد زیر نام برد:

الف) مقاومت بیشتر در برش مواد و آلیاژهای سخت؛

ب) مقاومت در دماهای بالاتر؛

ج) الماسه‌های یکپارچه قادر به جذب ارتعاشات کار هستند و صدای ایجاد شده از برخورد ابزار با قطعه کار بسیار کم است؛

د) الماسه‌های نصبی به راحتی و بدون نیاز به نگهدارنده‌های فولادی جدید تعویض می‌شوند.

معایب کاربایدها را نیز می‌توان در موارد زیر نام برد:

الف) قیمت بالا نسبت به فولادهای تندبر؛

ب) شکنندگی بیشتر نسبت به فولادهای تندبر؛

ج) شکل‌گیری آنها با ابزارهای الماسه‌ای مقدور می‌باشد.

در ضمن الماسه‌های نصبی که کاربرد فراوانی در CNC  ها دارند، با مواد خاصی مانند نیترید تیتانیوم پوشش داده می‌شوند تا عمر مفید آنها افزایش یابد. این پوشش، عمر ابزار را برای عملیات متعارف و معمول تراشکاری و فرزکاری تا  ۲۰  برابر افزایش می‌دهد.

۴- سرامیکها و سرمتها

ابزارهای سرامیکی بیشترین تکامل را در چند سال اخیر داشته‌اند و هر چند بسیار گران هستند؛ اما از ابزارهای الماسه‌ای ارزانترند. سرامیکها بسیار سبک و شکننده‌اند.

سرامیکها در سرعتهای برش سه الی چهار برابر ابزارهای کاربایدی هستند. صافی سطح حاصل از ماشین‌کاری با این ابزارها بسیار خوب است و استفاده از سیال خنک‌کننده (Coolant)  در براده‌برداری این ابزارها ضروری نیست.

مزایای سرامیکها عبارتند از:

الف) ارزانتر از الماسه‌های کربنی هستند؛

ب) مواد بسیار سخت را در زمان کوتاهی می‌برند و مقاومت گرمایی بالایی دارند.

همچنین معایب سرامیکها عبارتند از:

الف) بسیار شکننده‌تر از کاربایدها و فولادها هستند؛

ب) فقط برای برشهای سرعت بالا مفید هستند و در صورتی که در دورهای پایین کار کنند، می‌شکنند؛

ج) بسیاری از دستگاه‌ها، سرعت چرخشی مناسبی برای استفاده از ابزارهای سرامیکی ندارند.

سرمتها که ترکیب خاصی از سرامیکها و فلزات هستند، برای کاهش تردی و شکنندگی سرامیکها و بهبود آنها ابداع شده‌اند.

فلزاتی نظیر آهن، کروم، تیتانیوم و نیکل از ممزوج شدن با سرامیکها ابزارهای «سرامیک – فلز» یا همان «سرمٍت» را به وجود می‌آورند.

از بارزترین خصوصیات سرمتها و سرامیکها حفظ سختی در درجه حرارتهای خیلی بالا و مقاومت بالا در مقابل سایش؛ ولی مقاومت کم در مقابل خمش و شوکهای مکانیکی و بارهای ضربه‌ای و ارتعاش است و لذا با وجود این محدودیتها باید از ماشین‌ابزارهای صلب و کاملاً مستحکم که بدون لرزش می‌باشند، استفاده کرد.

۵- نیترید بور مکعبی

CBN (Cubic Born Nitride)

CBN  (با نام تجاری بورازون) سخت‌ترین مادة شناخته شده پس از الماس است. از مهمترین امتیازات آن، مقاومت حرارتی بیشتر از الماس و خنثی بودن آن از نظر شیمیایی است.استفاده از CBN  به عنوان ابزار براده‌برداری برای خشن‌کاری و پرداخت فولادهای کربنی و آلیاژی، ابزار سخت‌کاری‌شده و چدن‌های سخت و چائیده و به ویژه سوپرآلیاژها با پایه نیکل و کبالت و قطعات ساخته شده به روش متالوژی پودر، پلاستیک‌ها و گرافیت توصیه می‌شود.

اگر چه این نوع ابزارها را می‌توان بدون استفاده از سیال خنک‌کننده نیز به کار برد؛ ولی استفاده از سیال‌های خنک‌کننده حل‌شونده در آب نتایج مثبت به همراه دارد.

۶- الماس (Diamond)

الماس، سخت‌ترین ماده شناخته شده در جهان و سختی متوسط آن  ۵  برابر کاربایدهای سمانتر است. سختی بسیار بالا، مقاومت به سایش عالی، قابلیت هدایت حرارتی خوب، استحکام فشاری بسیار بالا و انبساط حرارتی ناچیز، باعث شباهت ابعادی بی‌نظیر آن در براده‌برداری و تضمین‌کنندة حصول اندازه‌های یکنواخت و دقیق در قطعه کار و صافی سطح بالا می‌باشد.

همچنین به دلیل خنثی بودن الماس از نظر شیمیایی و پایین بودن ضریب اصطکاک آن در تماس با اکثر مواد در هنگام براده‌برداری پدیدة جوش‌خوردن براده‌های قطعه کار به لبة ابزار به وقوع نپیوسته و همین مسأله باعث حصول صافی سطح خوب در ماشین‌کاری فلزات غیر آهنی و حتی غیر فلزات می‌شود.

ابزارهای الماس، به هنگام براده‌برداری از فولادهای نرم و کم‌کربن، به سرعت سائیده می‌شوند؛ در صورتی که سرعت سایش آنها در ماشینکاری فولادهای آلیاژی پرکربن کمتر است و گاهی اوقات در ماشین‌کاری چدن (با درصد کربن بالا) طول عمر زیادی از خود نشان می‌دهند. ولی با این وجود به طور کلی ماشین‌کاری آلیاژهای آهنی و چدن توسط ابزارهای الماس توصیه نمی‌شوند

انتخاب تیغه فرز

انتخاب تیغه فرز

تعریف تیغه فرز ؛جنس تیغه فرزها ؛زوایای تیغه فرزها ؛ سطوح فرز کاری ؛سطوح واقع بر تیغه فرز ؛سطوح قطعه کار ؛ جدول زوایای تیغه فرز ؛

انتخاب تیغه فرز

 

تعریف تیغه فرز

برای براده برداری از قطع کار در فرز کاری از تیغه چند لبه استفاده می شود که آن را تیغه فرز می نامند. لبه های برنده تیغه فرز فرم گوه ای دارند(مانند رنده تراشکاری) که در روی محیط دایره ای قرار گرفته اند. در فرزکاری هر یک از لبه های تیغه فرز در حین گردش دورانی خود مدت کوتاهی براده گیری می کنند و تا نوبت بعدی بدون براده برداری آزاد گردش کرده خنک می شوند ؛از این رو تیغه فرزها مانند رنده تراشکاری در اثر برش تحت فشار دائم قرار نمی گیرند ،و براده برداری با آنها سریعتر انجام می شود.

 

 

 

جنس تیغه فرزها

تیغه فرزها از مواد مختلفی ساخته می شوند که چند نمونه از آنها را ذکر می کنیم.

فولاد افزار سازی: تیغه هایی که از فولاد افزار سازی ساخته می شوند دارای قدرت براده برداری کم هستند و بدین سبب در مصارف محدود از آنها استفاده می شود. این فولادها مقدار 1 تا 1.2 % کربن دارند و با توجه به پیشرفت های فنی کنونی استفاده از این تیغه ها مفیدو مقرون به صرفه نیست و تا دمای 300 درجه سانتیگراد می تواند مقاومت کند.

 

فولاد افزار آلیاژی تند بر: تیغه فرزهایی که از فولاد تندبر ساخته می شوند،متداولترین نوع تیغه ها هستند که در صنعت به منظور صرفه جویی در هزینه از آن استفاده می شود. در جنس این فولادها علاوه بر آهن و کربن عناصری نظیر: وانادیم،مولیبدون،ولفرام و کروم به میزان زیاد آلیاژ شده ،ازاین رو قدرت تحمل و برش زیاد را دارد و تا 600 درجه سانتیگراد قدرت خود را حفظ می کند و آن را با علامت SS نشان می دهند. نوع دیگر فولاد آلیاژی که آب آلیاژ فولاد و کربن و ولفرام و کبالت به نام فولادHSS است و تا حدود 900 درجه سانتیگراد قدرت تحمل و برش دارد.

 

کاربیدهای سمانته شده:این تیغه ها از موادی ساخته می شوند که فاقد آهن هستندو آن را به طریق مثال سرامیک از کاربیدهای پودر شده تنگستن و تیتانیوم می سازند. کاربیدها مخلوطی هستند از کربن با فلزات دیر گداز و بهترین شرایط برش را دارا می باشند و قابلیت برش خود را تا حدود 900 درجه اسنتیگراد حفظ می کنند.

این تیغه ها احتیاجی به عملیات سخت کردن ندارند و از استحکام طبیعی برخوردار هستند.

چون کاربیدهای سمانته گران هستند از این رو فقط لبه های برنده تیغه ها از این جنس انتخاب می شود که به وسیله لحیم کاری یا پیچ بر روی بدنه تیغه قرار می دهند.

کاربیدها انواع و اقسام گوناگون دارند که با حروف F1,G1,H1,S2, S1 , نشان می دهند.

D,K,R

سرامیکها: سرامیکها مواد جدیدی هستند و محاسن زیادی دارند و از جمله می توان از مواد ارزان قیمت استفاده کرد مانند اکسید آلومینیوم (Al2O3 ) که در نظر است جایگزین کاربیدها شود.

 

زوایای تیغه فرزها

لبه برنده این تیغه فرزها مانند رنده های تراشکاری دارای زوایا آزاد-براده و گوه است که در شکل زیر نشان داده شد که به تعریف آنها می پردازیم.

شکل 1:زوایای تیغه فرز


 

 

 قبل از تعریف این زوایا لازم است سطوح فرز کاری را تعریف کنیم تا از اصطلاحات به کار برده شده در تعاریف زوایا آگاه باشیم.

 

سطوح فرز کاری

به دو دسته تقسیم می شوند:

الف) سطوح تیغه فرز ب) سطوح قطعه کار

 

در شکل زیر سطوح فرز کاری را می بینید.

شکل 2: سطوح فرز کاری

 

 

 

سطوح واقع بر تیغه فرز

-سطح براده: سطح براده به سطحی از تیغه فرز گفته می شود که در هنگام فرزکاری براده های برداشته از روی قطعه کار بر روی آن قرار می گیرد(شکل 2)

-سطح آزاد: سطح آزاد به سطحی از تیغه فرز گفته می شود که مقابل سطح برش قرار می گیرد و ممکن است به نام سطح فاز تیغه فرز نیز نامیده شود(شکل 2 ).

 

سطوح قطعه کار

سطح کار: سطح کار به سطحی گویند که از روی آن براده برداری می شود (شکل 2) .

سطح برش: سطح برش به سطحی از قطعه کار گفته می شود که مستقیما زیر لبه برنده تیغه فرز قرار می گیرد و براده برداشته می شود(شکل2).

سطح کار شده: سطح کاری که پس از براده برداری در روی قطعه کار ظاهر می شود"سطح کار شده" نامیده می شود.

زاویه گوه β :زاویه بین سطح براده و سطح آزاد را "زاویه گوه تیغه فرز" می نامند و با β نشان می دهند و مقدار آن بسته به جنس قطعات فرق می کند.(شکل 2)

 

در اجسام سخت مقدار آن بیشتر و در اجسام نرم مقدار آن کمتر است و مقدار تقریبی آن مانند زوایای رنده های تراشکاری است و در حدود 56 تا 81 درجه است.در جدول 1 زوایای تیغه فرزهای از جنس فولاد تندبر نشان داده شده است.

 

جدول 1: جدول زوایای تیغه فرز

 

 

 زاویه آزاد α : زاویه بین سطح آزاد تیغه و صفحه مماس بر سطح برش را "زاویه آزاد تیغه" می نامند و با علامت α نشان می دهند .مقدار آن تقریبا بین 4 تا ˚14 است (شکل2)

 

زاویه براده γ : زاویه بین سطح براده و سطح قائم برسطح برش به نام" زاویه براده" می نامند و با علامت γ نشان می ددهند (شکل2) و مقدار تقریبی آن بین 5 تا ˚30 است.

 

زاویه برش δ : مجموع زوایا ی آزاد α و گوه β را به نام "زاویه برش" می نامند و با علامت δ نشان می دهند.(شکل 2).

 

زاویه مارپیچ تیغه فرز λ : تیغه فرز ممکن است دارا لبه های برنده مستقیم (موازی محور فرز) و یا لبه برنده مارپیچ باشند مقدار این زاویه به گام مارپیچ لبه برنده تیغه بستگی دارد .برای براده برداری اجسام سخت مقدار این زاویه کم و در حدود 10 تا ˚35 است و در اجسام نرم مقدار این زاویه بیشتر و بین 25 تا ˚45 است  (شکل 2-1a )

الف: لبه های برنده مستقیم(موازی محور فلز) با تمام طول لبه خود براده برمی دارند و به آن سبب کار فرز ضربه ای است و قدرت برش کم است.

ب: لبه های برنده مارپیچ که آرامتر کار می کنند و هنگامی که یک دنده از کار خارج می شود دنده دیگری مشغول براده گیری شده است براده ها هم به پهلو ریخته می شوند.  شکل 2-1a

 

 

 

ماشين كاری با روش تخليه الكتريكی EDM

ماشين كاری با روش تخليه الكتريكی EDM

ماشين كاري با روش تخليه الكتريكي(EDM) يكي از روش هاي توليد مخصوص است كه كاربرد وسيعي يافته است. در اين روش براي براده برداري هيچگونه تماس مستقيمي بين قطعه كار و الكترود بر قرار نمي‌شود و در نتيجه نيروي فيزيكي نخواهيم داشت. آهنگ جداشدن فلز يا براده برداري به رسانايي الكتريكي قطعه كار بستگي دارد نه سختي آن
 اساس اين روش:
اين روش براي ماشين كاري كليه مواد هادي جريان به كار مي رود با هر مقدار سختي كه داشته باشند و از چهار بخش تشكيل مي شود:

1- الكترود
2- قطعه كار
3- سيال دي الكتريك
4- منبع تامين جريان


هدف از استفاده از دي الكتريك (آب يا نفت سفيد) كاهش دما در منطقه ماشينكاري و انتقال ذرات ماشين كاري شده از منطقه ماشين كاري مي‌باشد تا جرقه ها مناسب زده شوند و اصطلاحا پديده آرك (Arc) اتفاق نيافتد.
چنانچه بين دو الكترود (قطعه كار و الكترود) اختلاف پتانسيلي اعمال شود در اثر برخورد شديد الكترون ها به دي الكتريك بين دو الكترود مولكولهاي دي الكتريك يونيزه مي شوند و كانالي از يون بين دو الكترود به وجود مي آيد كه به آن كانال پلاسما گويند.(پلاسما حالت چهارم ماده است). و در اثر بر خورد شديد يونها به قطعه كار باربرداري صورت مي گيرد.

متن کامل مقاله ماشين كاری با روش تخليه الكتريكی EDM را از لینک زیر دریافت نمایید:

دانلود کنید.

ماشینکاری با قوس پلاسما

ماشینکاری با قوس پلاسما (پلاسما هوا)

در این فرایند هوای فشرده بعنوان گاز پلاسما بکار می رود . وقتی که هوا تحت دمای بالای قوس الکتریکی قرار می گیرد به گاز های تشکیل دهنده خود تجزیه     می شود به علت اینکه اکسیژن در پلاسمای حاصل بسیار فعال است سرعت برش تا حدود 25% زیاد می شود . یک اشکال این روش این است که معمولا یک سطح به شدت اکسید شده , بویژه با فولاد زنگ نزن وآلومینیم بدست می آید همچنین هوا باید بدون ناخالصی وبا فشار مناسب حفظ شود برای این کار از کمپرسور استفاده می شود در این روش بجای تنگستن از الکترودهای هافینم مس استفاده می شود زیا تنگستن یا اکسیژن واکنش نشان می دهند عمر الکتودها بدون توجه به مواد بکار رفته کوتاه است برای افزایش عمر الکترود از جریان رو به پایین اکسیژن د سوراخ نازلی که نیتروژن به عنوان گاز برشی اصلی از میان آن عبور می کند استفاده شده است با استفاده از مخلوط گازی 80% نیتروژن و 20% اکسیژن سرعت برش فولاد نرم تا حدود25% زیاد می شود.
 
فقط مواد رسانای الکتریکی مثل فولاد زنگ نزن , کرم نیکل , آلومینیم ومس را می توان با روش پلاسما هوا ماشینکاری کرد. ماشینکاری با پلاسما هوا برای برش صفحه ای از جنس فولاد به ضخامت6.25 mm  نصف روش های گازدوگانه و تزریق آب هزینه دارد زیرا در این روش هوا بعنوان حامل پلاسما وگاز محافظ استفاده می شود . ماشین های صنعتی دارای تجهیزات راه اندازی قوس اتوماتیک هستند که سرعت برشی اولیه بالا و قابل اطمینانی را تضمین می کند . این سرعت برشی سه تا پنج  برابر  بیش از سرعت بذش با گاز مرسوم است .

مکانیزم ماشینکاری پلاسما

موس وشوارد (1970 ) از محدود کسانی هستند که براده برداری با روش پلاسما را به روش غیر عملی بررسی کردند آنها برای ساده کاری فرض کردند که قطعه کار بعنوان جاذب گرما عمل می کند و کل انرژی آزاد شده با جت پلاسمای برخوردی جذب می شود یعنی کل انرژی جت پلاسما برای برش بکار می رود . انتقال گرما از جت پلاسما به قطعه کار اساسا با جابه جایی انجام می شود وتابش ستون سهم کمی با این انتقال دارد.
هنگامی که مثلا آرگون بکار می رود انتقال گرمای جابه جایی با ترکیب مجدد یون ها والکترون ها انجام می شود . روش اخیر بسیار موثر است واحتمالا دلیل این موضوع دمای پایین تر آن در موقع عمل و بنابراین نزدیک بودن به قطعه کار است.
موس وشوارد همچنین درمورد راههای براده برداری در قوس پلاسما بحث کرده اند ابتدا باید دمای جزء تا دمای لازم برای ایجاد واکنش براده برداری بالا برود. سپس قطعه کار ذوب شده ومایع  مذاب بوسیله پلاسما به صورت افشانه ظریف به بیرون دمیده می شود خطوط جریانی که روی سطح ماشینکاری شده ایجاد می شود نشانه مشخصه این روش براده برداری است همچنین ممکن است با واکنش شیمیایی بین پلاسما وقطعه کار یک مخلوط روان ایجاد شود . مکانیزم دیگر تبخیر است ماده تبخیر شده با جت پلاسما از منطقه ماشینکاری خارج می شود در این روش از گرافیت استفاده می شود. هنگامی که مواد آلی تحت PAM قرار می گیرند بر اثر گرما تجزیهشده ومحصولات فراری تولید می کنند که از محیط خارج شده وباقیمانده جامدی , اغلب کربن , باقی می گذارد که این نیز از سطح جدا می شود اگر باقیمانده سخت تر باشد باید با روشهای دیگری مثل تبخیر برداشته شود .

کاربرد ماشینکاری با فرایند پلاسما

1.برش پروفیل از صفحه تخت

برش پروفیل از فلزاتی مانند فولاد زنگ نزن , آلومینیم وآلیاژهای مس که ماشینکاری آنها با روشهای سوخت واکسی مشکل است , بویژه همراه با کنترل عددی کامپیوتر (CNC) یک کاربرد صنعتی گسترده ماشینکری با پلاسما است برای برش صفحاتی به ضخامت 6-25mm سرعت هایی تا چهار برابر سرعت  روش گاز سوخت واکسی گزارش شده است یک دسگاه اقتصادی تا حدود 250kw توان مصرف می کند .

2. شیارها

ابعاد شیار آشکار به توان قوس ,سرعت جابه جایی وزاویه وارتفاع مشعل پلاسما بستگی دارد . بوسیله PAM   با توان دستگاه 50kw  و سرعت براده برداری  mm/min80 شیارهایی با عمق 1.5mm وپهنای12.5mm در فولادزنگ نزن تولید شده است این سرعت در حدود ده تا سی برابر بزرگتر از سرعت براده برداری وسنگ زنی بزرگتر است روش های جت پلاسما را می توان برای ایجاد شیارهای مشابه در مواد غیر رسانا بکار برد اگرچه در این حالت سرعت براده برداری درحدود 30mm/min کاهش می یابد.
ماشینکاری با پلاسما را می توان برای تولید شیارها برای تولید آتی بکار برد .هنگامی که جوش لب به لب با کیفیت بالا در نظر باشدمی توان یک سمت اتصال را جوش دادوسپس در سمت مقابل اتصال ایجاد کرد(مثلا با براده برداری یا سنگ زنی) تا فلز جوش سالم بدست آید.

3.روتراشی

بعلت اینکه در ماشینکاری پلاسما قطعه کار و ابزار بهم برخورد نمی کنند این روش در روتراشی بویژه در مواردی که ماشینکاری آنها با روشهای مرسوم مشکل است مورد توجه می باشد.
مشعل پلاسما مشابه یک ابزار معمولی در ماشین استاندارد بسته می شود. مشعل باید مماس بر قطعه کار وبا زاویه 30 درجه نصب شود.سرعت سطح اغلب حدود 2m/min باسرعت پیشروی در حدود 5mm/min است.در روتراشی فولادآلیاژیسرعت براده برداری با توان مصرفی زیاد می شود.

4.ماشینکاری با پلاسما در زیرآب

اخیرا گزارش شده (گراهام ,1980) که با فروبردن نازل پلاسما وقطعه کار به عمق 10mm  آب صدا ,نورخیرهکننده ودود کم می شود همچنین می توان گاز نیتروژن براحتی بعنوان گاز پلاسما بکار برد ویک دستگاه تخلیه گران قیمت حذف می شود بعلت اینکه نیتروژن سطح ایجادشده را اکسید اکسید نکرده وبنابراین محصولات ماشینکاری در آب محلول هستند در ماشینکاری با پلاسما صفحات فولاد نرم این گاز به آرگون ویا ترکیبات آرگون / هیدروژن ترجیح داده می شود افزایش جزیی قدرت اسیدی با جایگزین کردن آب تازه به مقدار مناسب کم می شود .
البته ماشینکاری پلاسما در زیر آب با سرعت برش کم بدست آمده وبا مشکلات عملیاتی با الکترودهای سوزنی بکار رفته کاهش می یابد در هرحال دقت 0.2mm در 9mm  برای ماشینکاری با پلاسما درزیر آب با کنترل عددی مطرح شده است کاربرد این روش در زیر آب مدتی مورد بررسی قرار گرفته ولی هنوز اطلاعات کمی در این مورد وجود دارد
مشکل اصلی پیشرفت ماشینکاری پلاسما مقدار توان الکتریکی زیاد برای این فرایند است برای برش ورق 12mm  فولاد نرم با سرعت 2.5m/min توان220kw  لازم است از طرف دیگر این فرایند با روش کنترل عددی کامپیوتر تطبیق پیدا می کند اخیرا یک دستگاه ماشینکاری با پلاسما با کنترل عددی مستقیم (DNC ) برای استفاده در پل سازی معرفی شده است.

فرآیند ماشینکاری با جت آب و مواد ساینده (AWJM)

فرآیند ماشینکاری با جت آب و مواد ساینده (AWJM)

فهرست

مقدمه
تعریف ماشين‌كاري با جت آب و ذرات ساينده
اساس و روش کار
محدوديت‌هاي موجود در مورد نازل‌هاي مربوط به جت مواد ساينده
برخی از مزاياي ماشين‌كاري با جت مواد ساينده
عمر نازل برش‌كار
تلرانس‌ها و دقت‌هاي قابل دستيابي
ضخامت قطعه كار
 دقت ميزكار
استحكام و پايداري ميزكار
كنترل جت مواد ساينده
عقب‌افتادگي lag
عکس برخی از قطعاتی که با AWJM تولید شده اند و دستگاه آن
منابع

مقدمه

سال‌هاست كه از استفاده از تكنولوژي جت مواد ساينده و جت آب مي‌گذرد و ليكن اخيراً اين دو فرآيند در زمينه بازار ماشین ابزار جايگاه مناسبي پيدا كرده است. اين موضوع مهم و قابل توجه است و تعدادي از نوآوران قديمي با استفاده از جايگزيني و تكميل فرآيندهاي معمولي ماشين‌كاري خود با استفاده از اين دو فرآيند (ماشين‌كاري با جت‌آب و جت مواد ساينده) سود فراواني برده‌اند.
در ضمن باید توجه داشت که فناوری های جت آب و جت ذرات ساینده و ((جت آب و ذارت ساینده)) با هم تفاوت دارند. مثلا در در جت آب از آب با فشار بالا و در جت ذرات ساینده از ذراتی که توسط سیال هوا شتاب گرفته اند استفاده میشود ولی در جت آب و ذرات ساینده از ترکیب دو مورد قبل استفاده میشود. که در این مقاله به مورد آخر بیشتر خواهیم پرداخت

تعریف ماشين‌كاری با جت آب و ذرات ساينده :

در اين فرآيند جت آب همراه ذرات ساینده است كه با m/s900 سرعت(حدود 3 ماخ)‌ حركت مي‌كند و به هنگام برخورد اين جريان به سطح قطعه‌كار  ماده بر اثر برخورد ذرات شتاب گرفته با سیال آب به سرعت برداشته مي‌شود.آب از یک نازل خارج میشود که باید در فاصله خاصی از قطعه باشد. يك پمپ هيدروليك كه از يك موتور الكتريكي معمولاً تغذيه مي‌شود روغن را براي راه‌اندازي يك پمپ پيستوني رفت و برگشتي كه تشديد كننده ناميده مي‌شودبه فشار 117bar مي‌رساند. و آب با فشار بالا از نوك نازل خارج مي‌شود.

برای دانلود مقاله اموزشی فرآیند ماشینکاری با جت آب و مواد ساینده (AWJM) به لینک زیر مراجعه فرمایید:

دانلود کنید.

ماشینکاری اولتراسونیک USM

ماشینکاری صوتی

ماشینکاری آلتراسونیک (USM) یکی از فرآیندهای مدرن ماشینکاری مکانیکی می‌باشد. این فرآیند به منظور ماشینکاری مواد سخت و یا شکننده (رسانا و غیررسانا) که سختی آن‌ها معمولا بیش از 40 RC است به کار گرفته می‌شود. این روش ماشینکاری از یک ابزار به شکل معین و حرکت مکانیکی با بسامد بالا و یک دوغاب ساینده استفاده می‌کند. در USM برداشت مواد توسط دانه‌های ساینده‌ای صورت می‌گیرد که به وسیله یک ابزار در حال ارتعاش (به صورت عمود بر سطح قطعه‌کار) به حرکت واداشته شده‌اند.


در USM از اصل تغییر طول مغناطیسی استفاده می‌شود. هنگامی که یک جسم فرومغناطیس در یک میدان مغناطیسی متغیر پیوسته قرار داده شد طول آن تغییر می‌کند.


وسیله‌ای که صورت‌های دیگر انرژی را به امواج مافوق صوت تبدیل می‌کند مبدل فراصوتی می‌نامند. مبدل در USM سیگنال الکتریکی با بسامد بالا را به حرکت مکانیکی خطی (یا ارتعاش) با بسامد بالا تبدیل می‌کند، این ارتعاشات با بسامد بالا از طریق ابزارگیر به ابزار منتقل می‌شود. برای دست‌یابی به نرخ برداشت ماده (MRR) بهینه ابزار و ابزارگیر به گونه‌ای طراحی می‌شوند تا بتوان به حالت تشدید دست یافت. تشدید (یا بیشترین دامنه ارتعاش) زمانی صورت می‌گیرد که بسامد ارتعاش با بسامد طبیعی ابزار و ابزارگیر یکی شود.

The process is performed by a cutting tool, which oscillates at high frequency, typically 20-40 kHz, in abrasive slurry.
The shape of the tool corresponds to the shape to be produced in the workpiece.
The high-speed reciprocations of the tool drive the abrasive grains across a small gap against the workpiece .
The tool is gradually fed with a uniform force.
The impact of the abrasive is the energy principally responsible for material removal in the form of small wear particles that are carried away by the abrasive slurry.
The tool material, being tough and ductile, wears out at a much slower rate.

جزوه پاورپوینت ماشینکاری صوتی USM به زبان انگلیسی ودر 44 اسلاید را ازلینک زیر دریافت نمایید:

دانلود کنید.

پسورد : www.mechanicspa.mihanblog.com

کورونایت

کورونایت(Coronite)

کورونایت یک ماده جدید برای ابزارهای برشی است که دارای چقرمگی فولادهای تندبر و مقاومت سایشی سمنتد کارباید است.این خواص به فرزهای انگشتی کورونایت اجازه می دهد با سرعتهای بالاتری ماشینکاری کنند و با بهبودهای آتی عمر ابزار، میزان قابلیت اعتماد و صافی سطح بهتری نیز حاصل خواهد شد.این یک نوع ابزار برشی است که اساسا برای ماشینکاری فولاد توسعه یافته اما نمایش خوبی در ماشینکاری تیتانیم و سایر آلیاژهای سبک نیز نشان داده است..

- کورونایت شکاف کاربردی موجود بین سمنتد کارباید تندبر را پر می کند و همچنین قادر به افزایش تولید و بهره وری از وسایلی است که معمولا از فولاد تندبر ساخته می شوند.
محدوده فعلی از ابزارهای برشی اکثرا به فرزهای انگشتی(Endmills)ختم می شود که برای عملیاتی چون ایجاد شیارها،
حفره ها(Pockets)و پروفلیها در مرحله خشن کاری تا پرداخت به کار می روند.این ابزارها جایگزین بسیار مناسبی برای فولادهای تندبر هستند و برای اکثر مواد قطعه کارها مناسب می باشند.کلیه خواص این ماده جدید، کورونایت ، در اندازه دانه بندی و روش پیشرفته تولید و مدیریت دانه های بسیار ظریف تیتانیم نیتراید است.این دانه ها دارای اندازه ای حدود 0.1 میکرون هستند (مقایسه کنید با ذرات پودر تنگستن کارباید که بین 1 تا 10 میکرون اندازه دارند.)روش خاصی که در تولید این ماده به کار می رود به این ترتیب است که ذرات ریز TiN در یک شبکه فولادی عملیات حرارتی می شوند تا 60%-35% ظرفیت حجمی ماده را اشغال کنند .به این ترتیب نسبت ذرات سخت در کرونایت بیشتر از مقدار ممکن در فولاد تندبر و کمتر از حد موجود در سمنتد کارباید است.
- این گروه جدید مواد با دانه های بسیار ریز از اجزاء سخت ، یک ماده سخت به شمار می رود.این ماده دارای خواصی است که بیشتر به سمنتد کاربایدهای متعارف نزدیکتر  است تا به فولادهای تندبر، گرچه روش تولید آن را می توان یک نوع تکنولوژی ذرات فلز به شمار آورد.این ماده از یک نوع است که دارای 50% مواد سخت می باشد.
- خواص کورونایت در یک محدوده وسیعی بین سمنتد کاربایدها و فولاد تندبر تعریف می شود.این خواص می تواند با تعییر اجزاء آلیاژی و به خصوص میزان کربن تغییر نماید.عملیات حرارتی نیز باعث تغییر این خواص خواهد شد.اما منحنی های انتقال فاز که باید برای شبکه فولادی به کار رودرا نمی توان در اینجا یافت زیرا میزان ذرات ریز TiN بالاست که باعث ایجاد محدوده فازی وسیع و طول کوتاه مسیر آزاد میانی در فاز نگهدارنده(Binder ) می شود.
مسئله تعیین کننده در خواص برجسته کورونایت که سختی بالایی را ایجاد می کند، ظریف بودن اندازه ذرات است. اما چرا ذرات بسیار ریز خیلی بهتر هستند؟در میان دلایل متعدد می توان به این موضوعات اشاره کرد که تیز کردن یک لبه برنده با ساختار ذرات ریز آسانتر ست، لبه در برابر سایش مقاومت بیشتری نشان می دهد و لبه حتی در زمان ساییده شدن نیز تیزی خود را حفظ می کند.این لبه ها خودشان تیز می شوند و این خصوصیتی است که نه در فولاد تندبر و نه در سمنتد کاربایدها وجود دارد.همچنین اندازه ظریفتر دانه ها به این معناست که سطح ماشینکاری شده، ظریف تر خواهد بود.
ترکیب دانه های ظریفی که حجم عمده ای از ماده را اشغال کرده اند به این معناست که ذرات و تبع آنها مقاومت سایشی در کل ماده حضور دارد و نقطه ضعفی مشاهده نمی شود.هیچ سمنتد کاربایدی وجود ندارد که به اندازه کورونایت دارای مواد سخت باشد.یک دانه در فولاد تندبر معادل بیش از 1000 دانه در کورونایت است و به علاوه در کورونایت مواد سخت دارای حجمی بیش از دوبرابر حجم مواد سخت در فولاد تندبر هستند.
TiN که ماده سخت غالب در کورونایت است از نظر شیمیایی یک ماده پایدار محسوب می شود.این بدان معناست که سایش حفره ای و تمایل به چسبندگی بسیار پایین است.همچنین می توان نتیجه گرفت که لبه برنده از جنس کورونایت و ماشینکاری شده ، یک سطح صاف را ایجاد خواهند کرد.
فرآیند تولید از روشهای ترکیب کردن و روکش کاری پیشرفته ای بهره می گیرد.باید گفت که فرزهای انگشتی،به استثناء فرزهای سرکروی(Ballnose)، از کورونایت صلب(یکپارچه)ساخته نمی شوند.به جای آن این ابزارها دارای سه بخش خواهند بود:
1.    یک هسته فولادی
2.    یک لایه از کورونایت که حدو 15% از قطررا در بر می گیرد.
3.    یک روکش از جنس TiCN یا TiN که دارای حدود 2 میکرون ضخامت است و به روش PVD انجام گرفته است.
هسته فولادی که در فرزهای انگشتی با توانایی نفوذ محوری (Drilling endmills) از جنس HSS و در سایر فرزهای انگشتی از جنس فولاد فنر می باشد، آنها را نسبتا چقرمه ساخته است. کاربرد روکشی از جنس TiCN یا TiN با روشPVD روی ابزارهای برشی امروزه یک عمل نسبتا متداول محسوب می شود اما در مورد کورونایت این موضوع کمی فرق خواهد کرد.کورونایت دارای 50% تیتانیم نیتراید است و در نتیجه یک اتصال بسیار قوی بین زیرلایه و روکش ایجاد می شود که خطر پوسته کردن را کاهش می دهد.به علاوه باید به این حقیقت نیز توجه نمود که توزیع TiN در ماده بسیار یکنواخت است.بنابراین ضریب انبساط گرمایی در روکش و زیر لایه تقریبا یکسان خواهد بود.
لایه TiCN مقاومت سایشی بیشتری به سطح آزاد  لبه برنده خواهد داد و به این ترتیب مقاومت سایشی سطح جانبی ابزار بیشتر خواهد شد.از دیدگاه جنس ابزار ، کورونایت دارای مقاومت بالایی در مقابل سایش حفره ای یک ابزار می باشد .به این دلیل با تیزکاری مجدد سطوح براده کورونایت یک ابزار جدید به دست می آید بدون اینکه احتیاجی به روکش کردن مجدد باشد.
تولید کورونایت از طریق یک روش منحصر به فرد انجام می شود.پودر اصلی از طریق افزودن نیتروژن در یک کوره دو محفظه ای به دست می آید.این فرآیند در دمای نسبتا پایینی انجام می شود.در نتیجه پودر ذوب نخواهد شد.
هسته از جنس فولاد تندبر یا فولاد فنر با پودر کورونایت پوشانده می شود و سپس پرس می شود تا تبدیل به یک بدنه شکننده اما یک تکه شود.این مجموعه تا چگالی مورد نظر فشرده می شود و این عمل از طریق اکستروژن داغ در دمای بالاتر از هزار درجه صورت می گیرد تا پایداری ماده حفظ گردد.میله به دست آمده ماده خاصی جهت ساخت ابزار برشی کورونایت خواهد بود.بعد از این مرحله روکش کاری با لایه ای از تیتانیم کربو نیتراید یا تیتانیم نیتراید انجام خواهد شد.
-    خواص کورونایت نسبت به فولاد تندبر و حتی سمنتد کارباید برای محدوده کاری خودش دارای مزایای زیر است:چقرمگی و مقاومت خمشی مشابه فولاد تندبر و بهتر از سمنتد کارباید، سفتی که توسط مدول یانگ تعریف می شود از مقادیر بالای سمنتد کارباید کمتر ولی از فولاد تندبر بالاتر است،گرم سختی به طور مشخصی بالاتر از فولاد تندبر است، چسبندگی ماده قطعه کار به لبه برنده ابزار در مقایسه با هردو ابزار نسبتا پایین تر است،مقاومت در برابر سایش حفره ای و دیواره جانبی ابزار از HSS بهتر است و توانایی تولید سطوح با کیفیت بالا از هردو ابزار بهتر است.سایش متوازن و قدرت تیز نگه داشتن لبه برنده نیز از هر دو ابزار بهتر است.


متن فوق از جلد اول کتاب مرجع کامل راهنمای علمی"ابزارهای برشی مدرن" ترجمه آقای مهندس سید جلال حقی می باشد.

ماشینکاری با قوس پلاسما

ماشینکاری با قوس پلاسما (پلاسما هوا)

در این فرایند هوای فشرده بعنوان گاز پلاسما بکار می رود . وقتی که هوا تحت دمای بالای قوس الکتریکی قرار می گیرد به گاز های تشکیل دهنده خود تجزیه     می شود به علت اینکه اکسیژن در پلاسمای حاصل بسیار فعال است سرعت برش تا حدود 25% زیاد می شود . یک اشکال این روش این است که معمولا یک سطح به شدت اکسید شده , بویژه با فولاد زنگ نزن وآلومینیم بدست می آید همچنین هوا باید بدون ناخالصی وبا فشار مناسب حفظ شود برای این کار از کمپرسور استفاده می شود در این روش بجای تنگستن از الکترودهای هافینم مس استفاده می شود زیا تنگستن یا اکسیژن واکنش نشان می دهند عمر الکتودها بدون توجه به مواد بکار رفته کوتاه است برای افزایش عمر الکترود از جریان رو به پایین اکسیژن د سوراخ نازلی که نیتروژن به عنوان گاز برشی اصلی از میان آن عبور می کند استفاده شده است با استفاده از مخلوط گازی 80% نیتروژن و 20% اکسیژن سرعت برش فولاد نرم تا حدود25% زیاد می شود.
 
فقط مواد رسانای الکتریکی مثل فولاد زنگ نزن , کرم نیکل , آلومینیم ومس را می توان با روش پلاسما هوا ماشینکاری کرد. ماشینکاری با پلاسما هوا برای برش صفحه ای از جنس فولاد به ضخامت6.25 mm  نصف روش های گازدوگانه و تزریق آب هزینه دارد زیرا در این روش هوا بعنوان حامل پلاسما وگاز محافظ استفاده می شود . ماشین های صنعتی دارای تجهیزات راه اندازی قوس اتوماتیک هستند که سرعت برشی اولیه بالا و قابل اطمینانی را تضمین می کند . این سرعت برشی سه تا پنج  برابر  بیش از سرعت بذش با گاز مرسوم است .

مکانیزم ماشینکاری پلاسما

موس وشوارد (1970 ) از معدود کسانی هستند که براده برداری با روش پلاسما را به روش غیر عملی بررسی کردند آنها برای ساده کاری فرض کردند که قطعه کار بعنوان جاذب گرما عمل می کند و کل انرژی آزاد شده با جت پلاسمای برخوردی جذب می شود یعنی کل انرژی جت پلاسما برای برش بکار می رود . انتقال گرما از جت پلاسما به قطعه کار اساسا با جابه جایی انجام می شود وتابش ستون سهم کمی با این انتقال دارد.

هنگامی که مثلا آرگون بکار می رود انتقال گرمای جابه جایی با ترکیب مجدد یون ها والکترون ها انجام می شود . روش اخیر بسیار موثر است واحتمالا دلیل این موضوع دمای پایین تر آن در موقع عمل و بنابراین نزدیک بودن به قطعه کار است.
موس وشوارد همچنین درمورد راههای براده برداری در قوس پلاسما بحث کرده اند ابتدا باید دمای جزء تا دمای لازم برای ایجاد واکنش براده برداری بالا برود . سپس قطعه کار ذوب شده ومایع  مذاب بوسیله پلاسما به صورت افشانه ظریف به بیرون دمیده می شود خطوط جریانی که روی سطح ماشینکاری شده ایجاد می شود نشانه مشخصه این روش براده برداری است همچنین ممکن است با واکنش شیمیایی بین پلاسما وقطعه کار یک مخلوط روان ایجاد شود . مکانیزم دیگر تبخیر است ماده تبخیر شده با جت پلاسما از منطقه ماشینکاری خارج می شود در این روش از گرافیت استفاده می شود. هنگامی که مواد آلی تحت PAM قرار می گیرند بر اثر گرما تجزیهشده ومحصولات فراری تولید می کنند که از محیط خارج شده وباقیمانده جامدی , اغلب کربن , باقی می گذارد که این نیز از سطح جدا می شود اگر باقیمانده سخت تر باشد باید با روشهای دیگری مثل تبخیر برداشته شود .

کاربرد ماشینکاری با فرایند پلاسما

1.برش پروفیل از صفحه تخت

برش پروفیل از فلزاتی مانند فولاد زنگ نزن , آلومینیم وآلیاژهای مس که ماشینکاری آنها با روشهای سوخت واکسی مشکل است , بویژه همراه با کنترل عددی کامپیوتر (CNC) یک کاربرد صنعتی گسترده ماشینکری با پلاسما است برای برش صفحاتی به ضخامت 6-25mm سرعت هایی تا چهار برابر سرعت  روش گاز سوخت واکسی گزارش شده است یک دسگاه اقتصادی تا حدود 250kw توان مصرف می کند .

2. شیارها

ابعاد شیار آشکار به توان قوس ,سرعت جابه جایی وزاویه وارتفاع مشعل پلاسما بستگی دارد . بوسیله PAM   با توان دستگاه 50kw  و سرعت براده برداری  mm/min80 شیارهایی با عمق 1.5mm وپهنای12.5mm در فولادزنگ نزن تولید شده است این سرعت در حدود ده تا سی برابر بزرگتر از سرعت براده برداری وسنگ زنی بزرگتر است روش های جت پلاسما را می توان برای ایجاد شیارهای مشابه در مواد غیر رسانا بکار برد اگرچه در این حالت سرعت براده برداری درحدود 30mm/min کاهش می یابد.

ماشینکاری با پلاسما را می توان برای تولید شیارها برای تولید آتی بکار برد .هنگامی که جوش لب به لب با کیفیت بالا در نظر باشدمی توان یک سمت اتصال را جوش دادوسپس در سمت مقابل اتصال ایجاد کرد(مثلا با براده برداری یا سنگ زنی) تا فلز جوش سالم بدست آید. 

3.روتراشی

بعلت اینکه در ماشینکاری پلاسما قطعه کار و ابزار بهم برخورد نمی کنند این روش در روتراشی بویژه در مواردی که ماشینکاری آنها با روشهای مرسوم مشکل است مورد توجه می باشد.

مشعل پلاسما مشابه یک ابزار معمولی در ماشین استاندارد بسته می شود. مشعل باید مماس بر قطعه کار وبا زاویه 30 درجه نصب شود.سرعت سطح اغلب حدود 2m/min باسرعت پیشروی در حدود 5mm/min است.در روتراشی فولادآلیاژیسرعت براده برداری با توان مصرفی زیاد می شود.
4.ماشینکاری با پلاسما در زیرآب
اخیرا گزارش شده (گراهام ,1980) که با فروبردن نازل پلاسما وقطعه کار به عمق 10mm  آب صدا ,نورخیرهکننده ودود کم می شود همچنین می توان گاز نیتروژن براحتی بعنوان گاز پلاسما بکار برد ویک دستگاه تخلیه گران قیمت حذف می شود بعلت اینکه نیتروژن سطح ایجادشده را اکسید اکسید نکرده وبنابراین محصولات ماشینکاری در آب محلول هستند در ماشینکاری با پلاسما صفحات فولاد نرم این گاز به آرگون ویا ترکیبات آرگون / هیدروژن ترجیح داده می شود افزایش جزیی قدرت اسیدی با جایگزین کردن آب تازه به مقدار مناسب کم می شود .
البته ماشینکاری پلاسما در زیر آب با سرعت برش کم بدست آمده وبا مشکلات عملیاتی با الکترودهای سوزنی بکار رفته کاهش می یابد در هرحال دقت 0.2mm در 9mm  برای ماشینکاری با پلاسما درزیر آب با کنترل عددی مطرح شده است کاربرد این روش در زیر آب مدتی مورد بررسی قرار گرفته ولی هنوز اطلاعات کمی در این مورد وجود دارد
مشکل اصلی پیشرفت ماشینکاری پلاسما مقدار توان الکتریکی زیاد برای این فرایند است برای برش ورق 12mm  فولاد نرم با سرعت 2.5m/min توان220kw  لازم است از طرف دیگر این فرایند با روش کنترل عددی کامپیوتر تطبیق پیدا می کند اخیرا یک دستگاه ماشینکاری با پلاسما با کنترل عددی مستقیم (DNC ) برای استفاده در پل سازی معرفی شده است.

در فایل زیر به معرفی اجمالی ومختصر روشهای نوین ماشینکاری پرداخته شده است:

دانلود کنید.

عملیات هونینگ

عملیات هونینگ

هونينگ يك فرآيندكنترل شده، سرعت پايين و پرداخت كننده سطح است كه ماده بوسيله عمل برش دانه هاي سنگ هونينگ خراشيده مي شود.
براي بعضي كاربردها مثل سيلندر موتور، زاويه بين خطوط مهم بوده و بوسيله درجه مشخص مي شود.

چون هونينگ عمليات سرعت پاييني است، براده برداري بدون افزايش دما، بر خلاف سنگزني انجام شده و هيچ گونه صدمه حرارتي به قطعه وارد نمي شود.

متن کامل مقاله را ازلینک زیر دانلود نمایید:

دانلود