دانلود نرم افزار طراحی و انتخاب هواساز فن و محاسبات کویل

دانلود نرم افزار طراحی و انتخاب هواساز فن و محاسبات کویل



یک نرم افزار جامع و کامل تهیه شده در شرکت ساراول جهت طراحی و انتخاب محصولاتی همچون هواساز ، هواساز چند منطقه ای ، انوع فن ها و محاسبات انواع کویل های ساخته شده توسط کارخانه ساراول .

امکانات

  • محاسبه بار کویل بر اساس ورودی های متنوع

  • محاسبه و انتخاب فن های متنوع بر اساس شرایط ورودی و محاسبات الکترو موتور مربوط به آن

  • محاسبه بار گرمایی و سرمایی بر اساس استاندارد های مختلف تهویه مطبوع

  • امکان انتخاب نوع استفاده (جهت طراحی و یا محاسبه بار کویل های مختلف)

  • ارایه ابعاد و جزئیات دستگاه انتخاب یا طراحی شده

  • تبدیل گر واحد

  • نمودار سایکرومتری به صورت محاسباتی

  • چاپ خروجی های نرم افزار

برای دریافت نرم افزار روی لینک زیر کلیک کنید.(حجم فایل 5.33MB)

دانلود کنید.

پنوماتیک و کاربردهای پنوماتیک

پنوماتيك :

تعريف پنوماتيك (PHNEUMATIC):

اصطلاح پنوماتيك از كلمه يوناني پنيوما ، كه به عنوان تنفس باد و در فلسفه به عنوان روح آمده است مشتق مي شود.پنوماتيك علمي است در مورد حركات و وقايع هوا (ايجاد حركت و انتقال نيرو توسط هواي فشرده ) .

خواص هواي فشرده (مزاياي پنوماتيك ) :

با توجه به علل زير مي توان در موارد بسيار زيادي ماشينها وصنايع توليدي را فقط با پنوماتيك به نحوي ساده وارزان اتوماتيك نمود . آنچه كه مي تواند معرف خواص هواي فشرده باشد به شرح زير است .

1)    مقدار: براي توليد هواي فشرده ، هوا در همه جا به مقدار وحد كافي موجود مي باشد .
2)    انتقال : هواي فشرده را مي توان از طريق خطوط لوله براي راههاي دور منتقل نمود .
3)    انبار كردن : كارگاهها ويا كارخانه ها هميشه احتياج به داشتن كمپرسور جهت توليد هواي فشرده ندارند . زيرا كه مي توان هواي فشرده را در مخازن وكپسولها انبار نمود واز آن مجدداً استفاده نمود .
4)    حرارت : نوسانات حرارتي محيط در هواي فشرده تاثيري نداشته و بدين جهت مي توان در نواحي كه درجه حرارت به حداكثر سرما وگرما مي رسد به راحتي از آن استفاده نمود .
5)    اطمينان در مقابل انفجار : هواي فشرده ايجاد انفجار و آتش سوزي نمي نمايد و بدين جهت احتياجي به تاسيسات حفاظتي ندارد .
6)    تميزي : هواي فشرده شده تميز است و هواي آلوده نمي تواند وارد شبكه هوايي تميز شود . اين تميز بودن هواي فشرده در بعضي از صنايع مثل صنايع غذايي، چوب، نساجي و چرم سازي الزامي است .
7)    ساختمان : قطعات پنوماتيك داراي ساختماني ساده بوده و بدين جهت قيمت آن مناسب است .
8)    سرعت : هواي فشرده داراي سرعت زيادي بوده و مي تواند به سرعتي معمولا" بين 1 الي 2 متر در ثانيه برسد (سرعت كاري سيلندرهاي پنوماتيكي ) .
9)    تنظيم : سرعت ونيرو در عناصر پنوماتيكي قابل تنظيم هستند .
10)    اطمينان قبول بار : ابزار وعوامل پنوماتيكي تا حدي كه بار زياد باعث توقف آنها نگردد قبول بار مي نمايد .

معايب كاربرد هواي فشرده :

1)آمادگي : هواي فشرده را بايستي به نحو صحيح آماده كرد . مواد آلوده در هوا ورطوبت نبايستي در هواي فشرده موجود باشد چون باعث خرابي ابزار و عناصر پنوماتيكي مي گردد .
2) هزينه نيرو : هزينه استفاده از نيروي هواي فشرده فقط تا حد معيني اقتصادي مي باشد و اين ميزان معمولاً تا وقتي است كه فشار كارگاهي برابر هفت بار ونيروي حاصله با توجه به طول كورس و سرعت حداكثر بين 20 كيلو نيوتن تا 30 كيلو نيتون باشد .
3) هواي تخليه : هواي كار شده جهت تخليه داراي صداي بسيار بلندي بوده و امروزه با كاربرد صدا خفه كن ميتوان تا حد بسيار زيادي جلوي اين صدا را گرفت .
4) مخارج : هواي فشرده نسبتاً يك انرژي گران است كه ميتوان با استفاده از قطعات پنوماتيكي كه ارزان قيمت وداراي كاردهي زيادي هستند اين مخارج را جبران نمود .

5)تراكم : به علت خواص تراكمي هوا امكان ايجاد سرعت يكنواخت وثابتي در سيلندر نمي باشد.

متن کامل مقاله اموزشی پنوماتیک و کاربردهای پنوماتیک را از لینک زیر دریافت نمایید:

دانلود کنید.

سیال های عامل در سیستم های سرمایش تراکم بخار

سیال های عامل در سیستم های سرمایش تراکم بخار

تعداد سیال های عاملی که در سیستم های سرمایش تراکم بخار به کار می روند بسیار بیشتر از تعداد آنها در سیکل های قدرت بخاری هستند. در سیستم های ایجاد سرمایش اولیه، آمونیاک و در اکسید کربن از اهمیت ویژه ای برخوردار بودند، اما هر دو آنها بسیار سمی بوده و بنابر این مواد خطرناکی هستند. امروزه هیدروکربن های هالوژنه با نام های تجاری فرئون ژناترون از مبردهای اصلی صنعتی هستند. مثلا دی کلرو دی فلورمتان (CCl2F2) را فرئون 12 و ژناترون-12 و یا سرماساز-12 یا R-12 می گویند.


این گروه از مواد که معمولا آن ها را با نام کلروفلوروکربن ها یا CFC می شناسیم، در دمای محیط پایداری شیمیایی خوبی دارند، مخصوصا آن دسته از آنها که فاقد اتم های هیدروژن هستند. این ویژگی برای یک سیال عامل مبرد از اهمیت خاصی برخوردار است. البته این ویژگی ضررهایی هم دارد و اگر بخشی از آن از دستگاه نشت کند سالیان درازی طول می کشد تا به لایه های بالایی اتمسفر رسیده و در آنجا تجزیه شده و تولید کلرین کند که ماده ای مخرب برای لایه ی محافط اوزون است.

بنابراین بر همه ی ما واجب است که سعی در جایگزینی مواد مورد استفاده فراگیر ولی بسیار خطرناک CFC مخصوصا R-11 و R-12 نماییم و جانشین های مناسب و قابل قبولی را پیدا کنیم. هیدروژن هایی که دارای CFC می باشند (و اغلب HCFC نامیده می شوند) همانند R-22 دارای عمر کوتاهتری در جو بوده و بنابراین پیش از رسیدن به لایه استراتوسفر تجزیه شده و بی ضرر می شوند. مناسب ترین سیال ها که HFC نامیده می شوند اصلا اتم کلری ندارند.

در انتخاب سیال عامل دو نکته مهم وجود دارد که عبارتند از: دمایی که در آن باید سرمایش را ایجاد کرد و نوع وسیله ی به کار رفته. هنگامی که سیال عامل در طی فرایند انتثال حرارت تغییر فاز میدهد، فشار ماده مبرد در طی فرایندهای گرمادهی و گرما گیری برابر فشار اشباع (Saturated Pressure) می باشد. فشار کم به معنی حجم مخصوص بالا بوده و در نتیجه ابعاد دستگاه بزرگ خواهد شد. از طرفی فشار بالا موجب کوچکتر شدن دستگاه خواهد شد ولی باید به گونه ای طراحی شود که مقاومت لازم برای تحمل فشارهای بالا را داشته باشد؛ به خصوص که فشار ها باید زیر فشار بحرانی باشند. در کاربردهایی که به دماهای فوق العاده کم نیاز باشد از یک سیستم دو سیالی که سیال های به طور جداگانه کار می کنند استفاده می شود.

نوع کمپرسور مورد استفاده نیز اثر ویژه ای بر سرماسازی دارد. کمپرسورهای رفت و آمدی برای حجم مخصوص های کم مناسب بوده و در نتیجه فشار های بالایی ایجاد می کنند، در حالی که کمپرسورهای گریز از مرکز مناسب فشار های کم و حجم مخصوص های بالا می باشند. عدم استفاده از ماده مبرد سمی برای مصارف خانگی حائز اهمیت خاصی است. علاوه بر قابل قبول بودن از دیدگاه های محیط زیست، عدم حل روغن کمپرسور، قدرت در الکتریک، پایداری و ارزان بودن آن از ویژگی های دیگر یک ماده مبرد است.

متاسفانه مبرد های در هر حالت خاصیت خورندگی دارند. در طی فرایند های تبخیر و تقطیر در یک دمای معین، همه مبرد ها دارای ضریب عملکرد یکسانی در سیکل ایده آل نیستند. البته مطلوب این است که از ماده مبردی استفاده کنیم که دارای بالاترین ضریب عملکرد باشد، به شرط آنکه بقیه عوامل هم این امکان را به ما بدهند.

توربین گازی V94.3 زیمنس

توربین گازی V94.3 زیمنس

توربین های گازی مدل V94.3 زیمنس که با گارانتی شرکت های بزرگ نیروگاهی نظیر انسالدو ایتالیا نیز نصب وراه اندازی میشوند یکی از سیستم های توسعه داده شده از نظر ساختار وتجهیزات عملکردی و متالوژیکی شرکت زیمنس میباشد.

نمونه ای این تیپ نیروگاه گازی در واحد رودشور در حال نصب وراه اندازی میباشد.

در این پست فایل اموزشی تجهیزات توربین های تیپ V94.3 زیمنس شامل کمپرسور ، توربین ، پره های توربین ، سیستم احتراق و تجهیزات محفظه احتراق یا چمبر حلقوی ان ، شافت ، سیستم خنک کاری پره ها و تاریخچه ای از ساخت وتوسعه توربین های گازی اورده شده است.

برای دانلود فایل اموزشی توربین V94.3 زیمنس ونیروگاههای گازی به لینک زیر مراجعه فرمایید:

دانلود کنید.

پسورد : www.spowpowerplant.blogfa.com

دانلود ترجمه فارسی کتابچه راهنمای هوای فشرده از شرکت Copco

دانلود کتاب راهنمای هوای فشرده

در پست 2156 کتاب راهنمای هوای فشرده و تاسیسات پنوماتیکی شرکت Copco را بنا به درخواست دوستان مجددا بارگذاری نمودیم. دوستی سوال کرده بودند که ایا ترجمه این کتاب وجود داره وبنده به دلیل بی اطلاعی در این زمینه ایشون رو به جستجو در کتابخانه ملی و کتابفروشی ها ارجاع دادم.

دیروز دوستی با عنوان یک مهندس مکانیک -که متاسفانه خودشون رو معرفی نکرده اند- همانطور که در قسمت نظرات تابلو اعلانات میتوانید مشاهده فرمایید لینک دانلود ترجمه فارسی این کتاب ارزشمند را معرفی کرده اند.

دراین پست میتوانید ترجمه فارسی کتابچه راهنمای هوای فشرده از شرکت Copco را دانلود نمایید.

سرفصل ها ومباحث مطرح شده دراین کتاب بخوبی همه نیازهای دوستداران مباحث پنوماتیکی و تاسیسات هوای فشرده را رفع ورجوع نماید.درکنار این کتابچه حتما کتاب فارسی اموزش پنوماتیک فستو را که در پست های اولیه وبلاگ برای دانلود قرار داده بودیم را نیز مطالعه نمایید که پوشش بسیار خوبی بری مطالب این کتاب اموزشی خوب میباشد.

دانلود ترجمه فارسی کتابچه راهنمای هوای فشرده از شرکت Copco

دانلود کنید.

افزایش توان خروجی و بازده توربین گاز

افزایش توان خروجی و بازده توربین گاز

به منظور افزایش بازده سیکل توربین گاز، استفاده از حرارت اگزوز نیروگاه بعنوان یک منبع بالقوه انرژی مفید مورد توجه قرار گرفته است . اینکار هم اکنون توسط بسیاری از سازندگان توربینهای گاز از طریق سیکلهای ترکیبی مختلف انجام می پذیرد. از طرفی به تجربه ثابت شده است که بازدهی توربین گاز در فصول سرد سال و یا حتی در ساعات خنک تر روز افزایش می یابد به طوریکه یک درجه سانتیگراد کاهش در دمای محیط تقریباً 1% افزایش توان تولیدی را در پی خواهد داشت.

بدین منظور خنک کردن هوای ورودی به کمپرسور در فصول گرم سال، به عنوان یک پیشنهاد مطرح و بررسیهای لازم در جهت امکان پذیری آن انجام پذیرفت . جهت کاهش هوای ورودی، استفاده از یک سیستم تبرید جذبی که با حرارت اگزوز کار کرده و مصرف انرژی الکتریکی، هزینه های عملیاتی و تعمیر و نگهداری آن ناچیز می باشد بعنوان راه حل بهینه برگزیده شد. هزینه ساخت و نصب و هزینه های عملیاتی این سیستم در مقایسه با سایر سیستمها بسیار ناچیز می باشد. در مورد واحدهای بزرگ توربین گاز، میتوان از سیکل ترکیبی متداول گاز و بخار استفاده نمود.

این مقاله نوشته مهندس حاتمی پور در سومین همایش ملی انرژی ایران بود که در پست 995 ارائه شده بود وبه دلیل خرابی لینک دوباره اپلود وتقدیم حضور دوستان میگردد:

افزایش توان خروجی و بازده توربین گاز با استفاده از حرارت اگزوز در یک سیکل تبرید جذبی برای پائین آوردن دمای هوای ورودی کمپرسور

دانلود کنید.

دانلود کتاب ارتقای کارایی سیستم های هوای فشرده

دانلود کتاب ارتقای کارایی سیستم های هوای فشرده

Improving Compressed Air System Performance

کتابی کم حجم وجالب برای علاقه مندان به سیستم های پنوماتیکی و مهندسی تاسیسات

این کتاب راهنمایی های جالبی در زمینه مدیریت سیستم انرژی ، بهینه سازی کارکرد سیستم های نیوماتیکی و تشریح ساختار واجزای سیستم هوای فشرده دارد.

برای دانلود کتاب ارتقای کارایی سیستم های هوای فشرده به لینک زیر مراجعه فرمایید:

دانلود کنید.

پسورد : www.spowpowerplant.blogfa.com

کمپرسور پیستونی (Reciprocating Compressor)

کمپرسور پیستونی (Reciprocating Compressor)

.امروزه در صنعت تبرید بیشتر از کمپرسورهای پیستونی استفاده می شود . در این نوع کمپرسور ها نیز از حرکت رفت و آمدی پیستون سیال را متراکم می نمائیم .
 
 این نوع کمپرسور اغلب در سیستم تبرید مورد استفاده قرار می گیرد و ممکن است قدرت آنها از چند دهم اسب تا چند صدم اسب خواهد بود و می توان از یک سیلندر ویا چند سیلندر تشکیل شده باشد . سرعت دورانی محور کمپرسور ممکن است از ۲ تا ۶ ( r . s -۱ ) تغییر نماید . در کمپرسور ها ممکن است موتور و کمپرسور از هم جدا بوده که کمپرسور های باز نامیده می شوند . ( Hermiticaly Compressor ) خواهیم داشت که بیشتر در یخچالهای منزل که موتور کوچکی دارند از این نوع کمپرسورها استفاده می شود .

کمپرسورهای باز با قدرت های بالا غالباً افقی بوده و ممکن است دو عمله نیز باشند . در حالی که کمپرسورهای بسته معمولاً عمودی و یک مرحله می باشند .

ـ تقسیم بندی کمپرسورهای پیستونی :

الف) از نظر قدرت برودتی به شرح زیر تقسیم بندی می شوند :
۱) ریز ـ تا۵/ ۳ kw/h ( ۳۰۰ کیلو کالری در ساعت)

۲) کوچک ـ از۵ / ۳ تا ۲۳ kw/h ( ۳ تا ۲۰ هزار کیلو کالری در ساعت )
۳) متوسط ـ از ۲۳ تا ۱۰۵ kw/h ( ۲۰ تا ۹۰ هزار کیلو کالری در ساعت )

۴) بزرگ ـ بیش از ۱۰۵ kw/h ( بیش از ۹۰ هزار کیلو کالری در ساعت)
ب) از نظر مراحل تراکم به کمپرسورهای یک مرحله ای وکمپرسورهای دو یا سه مرحله ای .

ج) از نظر تعداد حفره کارگر به حرکت ساده به طوری که مبرد فقط در یک طرف پیستون متراکم می شود و حرکت دوبل که مبرد به نوبت در هر دو طرف پیستون متراکم می شود .
د) از نظر سیلندر به تک سیلندر و چند سیلندر .

و) از نظر قرار گرفتن محور سیلندرها به افقی و قائم و زاویه ( V شکل و مایل)
ر) از نظر ساختمان سیلندر و کارتر به ترکیبی و انفرادی .

م) از نظر مکانیزم میل لنگ و شاتون به بدون واسطه ( معمولی ) و با واسطه .
 

● اجزاء کمپرسور پیستونی تناوبی :

▪ کارتر

در کمپرسورهای قائم و V شکل کارتر یک قسمت اساسی برای اتصال قسمتهای مختلف است و ضمناً نیروی ایجاد شده را تحمل می کند لذا باید سخت و مقاوم باشد .
کارتر های بسته تحت فشار مکش بوده و مکانیزم میل لنگ و شاتون و روغن کاری در آن قرار می گیرد و برای کنترل سطح روغن شیشه روغن نما و برای دسترسی به مکانیزم میل لنگ و شاتون و پمپ روغن درپوشهای حفره ای و جنبی وجود دارد . در کمپرسورهای کوچک معمولاً یک درپوش حفره ای وجود دارد , به فلانژ بالائی کارتر سیلندر متصل می گــردد . در کمپرسور های متوسط بزرگ کارتر و سیلندر با هم ریخته می شوند .

این امر باعث کم شدن تعداد برجستگی ها و هرمتیک بودن کمپرسور و درست قرار گرفتن محور سیلندر ها نسبت به محور درز ( سوراخ ) زیر یاطاقان میل لنگ می شود .
کارتر کمپرسور معمولاً از چدن ریخته شده بوده و در کمپرسور های کوچک از آلیاژ آلومینیوم می باشد.

▪ سیلندرها :

در کمپرسورهای عمود ( قائم ) و V شکل بدون واسطه بصورت مجموعه دو سیلندر یا بصورت مجموع سیلندرها می سازند . در سیستم کارتر بوش داخلی پرس می شود که باعث کم شدن خورندگی و ساده شدن تعمیرات می گردد و در صورت سائیده شدن قابل تعویض هستند . مجموعه سیلندرها دارای کانال مکش و رانش مشترک می باشند . تحولات در داخل سیلندر عبارت است از مکش و تراکم رانش مبرد است و بدنه سیلندر نیروهای فشار گاز و فشردگی رینگها و نیروی نرمال مکانیزم میل لنگ و شاتون را تحمل می کند .


▪ پیستون:

در کمپرسورهای عمودی وV و VV شکل بدون واسطه پیستون های تخت عبــوری بکــار می رود . ولی در کمپرسورهای غیر مستقیم الجریان ساده تر و غیر عبوری می باشد . در پیستون های عبوری که فرم کشیده تری دارند و سوپاپ مکش روی آن قرار دارد کانالی وجود دارد که از طریق این کانال بخار مبرد از لوله مکش به سوپاپ مکش هدایت شده . در کمپرسورهای اتصال مستقیم با اتصال پیستون به شاتون به وسیله اشپیل های شناور پیستونی (۳ گژنپین ) انجام می گیرد .


پیستون بدون رینگ معمولاً از چدن یا فولاد با کربنیک پائین ساخته می شود . پیستون کمپرسورهای افقی از چدن یا فولاد با تسمه های بابیتی در قسمت پائین می باشد . مهره و پیستون از جنس فولاد است . در پیستون های تخت لوله ای سوراخ های زیر گژنپین باید در یک راستا و عمود بر محور پیستون باشد . ( برای اینکه در جمع کردن پیستون با شاتون پیستون نسبت به محور سیلندر کج نباشد . در پیستون های دیسکی سوراخ زیر میله باید در یک راستای سطح خارجی پیستون وسطح نگهدارنده لوله عمود بر محور پیستون باشد. شیارهای رینگ ها باید موازی هم بوده و سطوح خارجی آنها عمود بر پیستون باشد . مفصل اتصال پیستون و شاتون ( دسته پیستون ) کاملاً شناور و آزاد است و می تواند در داخل بوش شاتون و بوشهای بدنه پیستون آزادانه بچرخد .▪ رینگ های پیستون :
برای جلوگیری از نفوذ گاز متراکم شده به کارتر از رینگ های فشار( کمپرسی) و همچنین جلوگیری از خروج روغن از آن از رینگ های روغن استفاده می شود که در شیارهای مخصوص روی پیستون سوار می شوند . رینگ ها باید حتی الامکان کیپ شیار و در عین حال مانع حرکت آزاد پیستون در سیلندر نشوند . تعداد رینگهای آب بندی بستگی به دور کمپرسور دارد .

▪ واسطه ( کریسکف):

واسطه برای اتصال رابط و شاتون بکار می رود و یک حرکت متناوب مستقـــیم الخط را طی می کند .


▪ شاتون :

شاتون برای اتصال میل لنگ به پیستون یا به واسطه بکار می رود و جنس آن فولاد و بعضی اوقات چدن تشکیل شده از میله با دو سر که یکی از آنها اتصال ثابت دارد و دیگری مجزا یا جدا شونده است .


▪ میل لنگ :

این قسمت کمپرسور یکی از مهم ترین اجزاء می باشد و باید خیلی سخت و محکم و در سطح اتصال آن نباید در شرایط مختلف خورندگی ایجاد شود . میل لنگ یک محور چرخنده است که در حرکت دورانی الکتروموتور را توسط شاتون به حرکت متناوبی پیستون در داخل سیلندر تبدیل می کند .


▪ چرخ طیّار :

چرخ طیار را روی میل لنگ بر خار نشانده و با مهره محکم می کنند . در زمانی که برای انتقال انرژی از الکتروموتور به میل لنگ از تسمه استفاده می شود .


▪ کاسه نمد :

برای محکم نمودن میل لنگ و آب بندی خروجی آن از بدنه کارتر در کمپرسورهای اتصال مستقیم از کاسه نمد استفاده می شود . درست کارکردن کاسه نمد باعث آب بندی بودن کمپرسور و در نتیجه کار صحیح کمپرسور می شود .


کاسه نمدها را می توان به دو گروه تقسیم کرد:

۱) کاسه نمد کمپرسورهای اتصال مستقیم با حلقه های اصطکاک , آب بندی بین حلقه ها در اثر ارتجاع فنر یا سیلیفون یا دیافراگم و همچنین به کمک وان روغنی که ایجاد سیفون هیدرولیکی می نماید می باشد . به گروه اول می توان کاسه نمد سیلیفونی و فنری را نسبت داد .

۲) کاسه نمد کمپرسورهای اتصال غیرمستقیم دارای خانه های زیاد با حلقه های برجسته فلزی یا مسطح با قشر فلوئور است . کاسه نمد سیلیفونی با گشتاور ( کوپل) اصطحکاک برتری .
فولاد تا سالهای اخیر در کمپرسورهای کوچک فریونی با میل لنگ به قطر تا ۴۰ میلی متر مورد استفاده قرار می گرفت. کاسه نمد فنری ـ کار کمتر در تهیه ، معتبر در کار ، مونتاژ ساده و کار ساده تر مزایای کاسه نمدهای فنری با سیفون روغنی است .

بهترین نوع کاسه نمد فنری با کوپل یا چفت های حلقه ای می باشد که یکی از گرافیت مخصوص و دیگری از فولاد سخت می شوند .

▪ سوپاپ های مکش و رانش کمپرسور :

در کمپرسورهای مبرد این نوع سوپاپ ها خودکار است و بر اثر اختلاف فشار در دو طرفه صفحه سوپاپ بازشده و در اثر ارتجاع فنر صفحه بسته می شود . مورد استفاده بیشتر را نوع نواری ( صفحه های باریک ) ارتجاعی بدون فنر دو طرفه دارد که یک آب بندی قابل اطمینان را بوجود آورده و مقطع عبور زیادی را ایجاد می نمایند . صفحات این نوع سوپاپ ها از صفحات باریک فولادی که خاصیت ارتجاعی دارند و به ضخامت۲/ ۰ تا ۱ میــلی متر هستــند تهیــه می شوند و فرم صفحات مختلف است . اجزاء اساسی هر سوپاپ عبارتند از صفحه سوپاپ , پایه ( نشیمنگاه) که صفحه روی آن می نشیند و مقطع عبور و بست را تشکیل می دهند و محدود کننده صفحات روی پایه . در بعضی از سوپاپ ها صفحه سوپاپ به وسیله فنر به پایه فشرده می شود . و در کمپرسورهای فریونی غیر مستقیم الجریان سوپاپ های مکش و رانش در قسمت فوقانی سیلندر ( تخته سوپاپ ) واقع هستند .

▪ سوپاپ محافظ :

برا ی حفاظت کمپرسور از سانحه در مواقع ازدیاد سریع فشار رانش از سوپاپ محافظ استفاده می شود . ازدیاد سریع فشار رانش ممکن است بخاطر نبودن آب در کندانسور یا بسته بودن شیر رانش در زمان روشن کردن کمپرسور بوجود بیاید .
در زمان کار کمپرسور سوپاپ محافظ باید بسته باشد و وقتی فشار از حد مجاز در سیلندر تجاوز کرد آن باز شده و قسمت رانش را با قسمت مکش کمپرسور مرتبط می کند . فشار باز شدن سوپاپ محافظ بستگی به اختلاف فشار محاسبه ای ( Pk - Po ) دارد که معمولاً برای آمونیاک و فریون ۲۲ حدود۲ / ۱ مگا پاسکال یا ۱۲ کیلو گرم بر سانتی متر مربع و برای فریون ۱۲ حدود۸/ ۰ مگا پاسکال می باشد که باز شـدن ســـوپاپ محافــظ در اختلاف فــشار۶/ ۱ ( آمونیاک و فریون ۲۲ ) و یک مگا پاسکال برای فریون ۱۲ تنظیم می شود .

▪ بای پاس (میان بر) :

دو نوع میان بر وجود دارد :


برای کم کردن قدرت مصرفی در استارت کمپرسورهای متوسط و بزرگ از میان بر استارت استفاده می شود و قسمت رانش را به قسمت مکش متصل می کند و در نتیجه در زمان استارت نیروی وارد بر پیستون حذف می شود یعنی کمپرسور در خلاص کار می کند و قدرت فقط برای حرکت کمپرسور و جبران نیروی انرسی و مقاومت مصرف می گردد .
میان بر گاز ممکن است دستی یا اتوماتیک باشد که در این صورت برای باز شدن از یک شیر برقی (سلونوئید) استفاده می شود و بسته شدن از طریق ضربان رله زمانی وقتی الکتروموتور دور کافی را بدست می آورد صورت می پذیرد .

در میان بر دستی زمان استارت کمپرسور شیرهای رانش و مکش هر دو بسته هستند در حالی که در میان بر اتوماتیک هر دو باز بوده و در لوله برگشت یک سوپاپ برگــشت بکار می رود. در کمپرسورهای کوچک و متوسط تا قدرت ۲۰ کیلو وات معمولاً از میان بر استارت استفاده نمی شود و الکتروموتور آنها با گشتاور استارت بیشتری انتخاب می گردد . در کمپرسور های بزرگ برای تغییر بازده برودتی از میان بر تنظیم استفاده می شود و بطور دستی یا اتوماتیک قسمت سیلندر به قسمت مکش متصل می گردد و بدین ترتیب بازده برودتی حدود ۴۰ الی ۶۰ درصد کاهش می یابد .

● سیستم روغن کاری :


روغن کاری گرم شدن و خورندگی قسمت های متحرک کمپرسور را کم کرده و انرژی مصرفی برای مقاومت را تقلیل می دهد . همچنین باعث آب بندی بیشتر کاسه نمد , رینگ ها و سوپاپ ها می گردد . در کمپرسور های مبرد از روغن های مخصوص طبیعی و مصنوعی استفاده می گردد و برای مبردهای مختلف روغن های متفاوتی بکار می رود .( با عددی که نشان دهنده غلظت روغن است) روغن کاری کمپرسورها به دو طریق فشاری یک پمپ کوچک روغن را تحت فشار به یاطاقانها ثابت متحرک می رساند . پمپ های مورد استفاده چرخ دنده ای یا پروانه ای و یا پیستونی می باشند که یک سوپاپ آزاد کننده فشار در مسیر پمپ سوار می شود تا از تمرکز فشار زیاد بر روی پمپ جلوگیری بعمل آورد . نیروی لازم برای کار پمپ از گردش میل لنگ تأمین می گردد که در پمپ های پیستونی شناور انتهای میل لنگ یک بادامک یا برجستگی خارج از مرکز خواهد داشت و در پمپ چرخ دنده ای سر میل لنگ نیز چرخ دنده ای برای چرخش پمپ دارد و در پمپ های پروانه ای انتهای میل لنگ دارای یک وسیله گرداننده پره ای می باشد .
در قسمت مکش پمپ یک فیلتر قرار می گیرد . توری در ارتفاع ۱۰ تا ۱۵ میلی متر از کف کارتر قرار گرفته و تعداد خانه های ( شبکه های توری) فیلتر بین ۱۵۰ تا ۳۰۰ عدد در یک سانتی متر مربع می باشد . در قسمت رانش پمپ روغن کمپرسورهای متوسط و بزرگ یک فیلتر صفحه ای شکافدار توری ریز قرار می گیرد که با کمک آنها وقتی محور بطور دستی می گردد متناوباً تمیز می شود . فاصله بین صفحات۰۳/ ۰ تا۱/ ۰ میلی متر است . فشار روغن از طریق سوپاپ مخصوص کنترل می شود و در صورت افزایش فشار باز شده و روغن از قسمت رانش پمپ به کارتر می ریزد . معمولاً فشار روغن بین۶/ ۰ تا ۲ اتمسفر بیش از فشار در کارتر است و هر چقدر فشار روغن زیاد باشد مقدار روغن خروجی از کمپرسور نیز زیادتر می گردد . وقتی از یاطاقانهای لغزنده استفاده می شود معمولاً تمام روغن از پمپ به یاطاقان فرستاده شده و از طریق کانال های مخصوص در میل لنگ به یاطاقان شاتون و همچنین کاســه نمد می رود . وقتی میل لنگ با یاطاقان نوسانی استفاده می شود , روغن به کاسه نمد داده شده و از شیار میل لنگ به قسمت های دیگر روانه می گردد . کمپرسور ها معمولاً دارای کلید اطمینان روغن هستند که به فشار روغن کار می کند و هر زمان که فشار روغن به دلیل خرابی سیستم افت کند موتور را از کار می اندازد و کمپرسور خاموش می شود . در سیستم روغن کاری به طریق پاشش کارتر تا نیمه های یاطاقان اصلی پر از روغن می شود و زمانی که میل لنگ می چرخد ته شاتون ( قسمت خمیده ) وارد روغن شده و با گردش میل لنگ روغن را به قسمت انتهای سیلندر و پیستون می پاشد . گاهی قسمت انتهای شاتون در اتصال به میل لنگ دارای محفظه ای است که در ورود به روغن پر شده و وارد یاطاقان می شود . سیستم روغن کاری پاششی معمولاً در کمپرسور های کوچک مورد استفاده قرار می گیرد .

در بعضی از کمپرسور ها برای سیستم روغن کاری خنک کننده آبی یا هوائی بصورت کوئل در نظر می گیرند . در کمپرسور های معمولی مخزن روغن همان کارتر کمپرسور است ولی در کمپرسورهای واسطه ای مخزن روغن مخصوصی در نظر گرفته میشود.
در کمپرسور هرمتیک از روغن کاری فشاری استفاده می شود .

● سیستم خنک کننده کمپرسور :

کمپرسورها به دو علت اساسی خنک می شوند که یکی اصطکاک بین قطعات متحرک و دیگری افزایش درجه حرارت ناشی از تراکم بخار است . خنک کردن کمپرسور به منظور جلوگیری از کاهش کارآیی کمپرسور و همچنین نگهداری کیفیت روغن و روغن کاری است .


روغنی که برای روغن کاری به گردش در می آید وسیله خوبی برای جـــذب و دفع گرمــا می باشد و به همین جهت در بعضی از کمپرسورها خنک کننده مخصوص بــرای روغن بکار می رود و در بعضی از کمپرسورها سطح خارجی را پره دار می سازند تا سطح تبادل حرارتی آنرا با هوا زیاد کنند و در بعضی انواع نیز از یک موتور و پنکه جهت عبور هوا بر روی کمپرسور و خنک کردن آن استفاده می شود .
در سیستم هائی که تقطیر مبرد به وسیله آب خنک کننده برج است , کمپرسور نیز با آب خنک می شود . برای گردش آب لوله با محفظه ای در قسمت مجاور بالای سیلندر در نظر گرفته می شود که به کیسه خنک کننده معروف است . کمپرسور های هرمتیک ( بسته ) که موتور و کمپرسور در یک پوسته قرار دارند بیشتر در معرض داغی قرار دارند و معمولاً با عبور دادن بخار قسمت مکش کمپرسور با اطراف موتور گرمای آنرا می گیرند .

حفاظت های کمپرسور در نیروگاههای گازی V 94.2

حفاظت های کمپرسور در نیروگاههای گازی V 94.2

دمای هوای ورودی کمپرسور

ترمومترهای مقاومتی MBA11CT111 ، MBA11CT112 ، MBA11CT113 و MBA11CT114  دمای هوای ورودی کمپرسور را اندازه گیری می کنند که این مقادیر برای محاسبه دمای گازهای خروجی اگزاست ( TATK ) ، مورد نیاز برای کنترل و حفاظت دمایی توربین ، بکار می رود.

فشار ورودی کمپرسور

ترانسدیوسر فشار MBA11CP104 فشار در داکت ورودی  کمپرسور را اندازه گیری می کند. فشار اندازه گیری شده با ترکیب با دمای هوای ورودی کمپرسور،می تواند جهت مشخص کردن دبی جرمی کمپرسور، بکار رود ( فقط به منظورنمایش ).

Variable Inlet Guide Vanes

پره های راهنمای هوای ورودی کمپرسور IGV

آشکار سازی پدیده سرج کمپرسور

افت فشار مابین داکت ورودی و ورودی کمپرسور ( بلافاصله قبل از پره های IGV ) بوسیله 3 عدد سویچ فشار MBA11CP001 ، MBA11CP002 و MBA1CP003  ( بر اساس لاجیک 2 از 3 و برای فشار 30 mbar ) اندازه گیری می شود. ناپایداری در کمپرسور ، خیلی سریع بوسیله تغییر در اختلاف فشار ، آشکار می گردد.
هنگامی که اختلاف فشار به کمتر از حد فعال شدن سویچ ها ، افت کند ، بر اساس لاجیک 2 از 3 فرمان تریپ واحد صادر می شود.
آشکارساز پدیده سرج کمپرسور ، به منظور جلوگیری از دخالت نادرست پدیده سرج در طول پروسه استارت واحد ، در دور تقریبا بیش از 2520 rpm فعال می گردد.
ولوهای درین MBA11AA201 و MBA11AA211 می توانند بعد از Shut-down واحد ، جهت درین مسیرهای ابزار دقیق فشار ، بطور جزئی باز شوند.

دما و فشار خروجی کمپرسور

ترانسدیوسر فشار MBA12CP101 و ترموکوپل های MBA12CT101 و MBA12CT102  دما و فشار خروجی کمپرسور را اندازه گیری می کنند تا برای نمایش در کنسول کنترل توربین-ژنراتور و یا بدست آوردن اطلاعات ، مورد استفاده قرار گیرد. بعلاوه ، سیگنال MBA12CP101 با کنترل کننده اختلاف فشار هر چمبر ، ترکیب می شود تا رفتار مشعلهای پرمیکس کنترل شود.
نشانگر محلی MBA21CP501 اختلاف فشار مابین خروجی کمپرسور و هوای خنک کاری در مرحله اول توربین را نشان می دهد.
ولوهای درین MBA12AA201 و MBA21AA201 می توانند بعد از Shut-down واحد ، جهت درین مسیرهای ابزار دقیق فشار ، بطور جزئی باز شوند.

---------------

درادامه نیز میتوانید کتابچه اموزشی زیر را درزمینه تجزیه وتحلیل پره های راهنمای کمپرسورها IGV و انالیز این سیستم دانلود ومطالعه فرمایید:

EFFECTS OF INLET GUIDE VANE FLOW CONTROL ON FORCED RESPONSE OF A TRANSONIC FAN

دانلود کنید.

كمپرسور پیستونی - Reciprocating Compressor

 كمپرسور پیستونی - Reciprocating Compressor

ـ تقسیم بندی كمپرسورهای پیستونی:

الف) از نظر قدرت برودتی به شرح زیر تقسیم بندی می شوند:

۱) ریز ـ تا۵/ ۳ kw/h ( ۳۰۰ كیلو كالری در ساعت)

۲) كوچك ـ از۵ / ۳ تا ۲۳ kw/h ( ۳ تا ۲۰ هزار كیلو كالری در ساعت)

۳) متوسط ـ از ۲۳ تا ۱۰۵ kw/h ( ۲۰ تا ۹۰ هزار كیلو كالری در ساعت)

۴) بزرگ ـ بیش از ۱۰۵ kw/h ( بیش از ۹۰ هزار كیلو كالری در ساعت)

ب) از نظر مراحل تراكم به كمپرسورهای یك مرحله ای وكمپرسورهای دو یا سه مرحله ای.

ج) از نظر تعداد حفره كارگر به حركت ساده به طوری كه مبرد فقط در یك طرف پیستون متراكم می شود و حركت دوبل كه مبرد به نوبت در هر دو طرف پیستون متراكم می شود.

د) از نظر سیلندر به تك سیلندر و چند سیلندر.

و) از نظر قرار گرفتن محور سیلندرها به افقی و قائم و زاویه ( V شكل و مایل)

ر) از نظر ساختمان سیلندر و كارتر به تركیبی و انفرادی.

م) از نظر مكانیزم میل لنگ و شاتون به بدون واسطه ( معمولی ) و با واسطه.

اجزاء كمپرسور پیستونی تناوبی:

▪ كارتر

در كمپرسورهای قائم و V شكل كارتر یك قسمت اساسی برای اتصال قسمتهای مختلف است و ضمناً نیروی ایجاد شده را تحمل می كند لذا باید سخت و مقاوم باشد .

كارتر های بسته تحت فشار مكش بوده و مكانیزم میل لنگ و شاتون و روغن كاری در آن قرار می گیرد و برای كنترل سطح روغن شیشه روغن نما و برای دسترسی به مكانیزم میل لنگ و شاتون و پمپ روغن درپوشهای حفره ای و جنبی وجود دارد . در كمپرسورهای كوچك معمولاً یك درپوش حفره ای وجود دارد , به فلانژ بالائی كارتر سیلندر متصل می گــردد . در كمپرسور های متوسط بزرگ كارتر و سیلندر با هم ریخته می شوند .

ادامه نوشته

تعمیر و نگهداری کمپرسورهای تبرید

تعمیر و نگهداری کمپرسورهای تبرید

کمپرسورهای تبرید بزرگ تبرید مورد استفاده قرار می گیرند و ظرفیت هز یک از آنها ار ۱۰۰ تا ۱۰۰۰۰ تن تبرید است . بر حسب نوع و ظرفیت کمپرسور مبردهای مورد استفاده در چیلرفریون ۱۲ یا ۲۲ یا ۱۱۳ یا یا ۵۰۰ یا ... استفاده می شوند البته در سالهای اخیر به دلیل آشکار شدن اثر مخرب CFC ها بر لایه اوزون جو زمین و ممنوعیت استفاده از آنان مبردهای بی زیان برای لایه اوزون به تدریج جانشین آنان می شوند که از جمله آنان می توانیم به R134a اشاره کرد .

کمپرسورهای تبرید از یک یا تعدادی پره تشکیل می شوند که روی محوری که با سرعت در محفظه می چرخد سوار شده استمبرد که به چشم پره وارد شده است با نیروی گریز از مرکز در سرعت زیادبه نوک پره رانده می شود و از اینجا مبرد به دیفیوزر وارد شده و فشار سرعتی آن به فشار استاتیکی تبدیل می شود . سپس به کندانسور رانده شده تا تقطیر شودو ادامه سیکل انجام می شود .

۱) روانکاری

در کمپرسورهای سانتریفوژ بنا بر دستورالعمل کارخانه سازنده فقط باید از روغن با درجه بالا استفاده شود سطح روغن باید در تمام سیستم روغن کاریمورد بررسی قرار گیرد تا حد صحیح آن همیشه برقرار باشد .

سطح روغن باید به عنوان مرجع روی شیشه رویت یا سایت گلاس علامت گذاری شود و لازم است حین کار و هنگام خاموشی سیستم مورد بازبینی قرار گیرد . سایر کارهایی که باید انجام شود به شرح زیر است :

بازبینی منظم فشار و دما هنگام کار دستگاه
بازبینی منظم فشار و دما هنگام خاموشی دستگاه هر ۶ ماه یک بار
بازرسی سطح روغن هنگام خاموشی دستگاه
تعویض روغن در صورت کثیف شدن روغن
تمیز کردن صافی روغن در هنگام تعویض کردن روغن در صورت لزوم
۲) گرمکن روغن

گرمکن روغن باید در هنگام خاموشی دستگاه روشن باشد تا مخلوط روغن و مبرد را از هم جدا کند

۳) مبرد

هر ۲ سال یک مرتبه باید از مبرد نمونه برداری شود تا در صورت کثیف بودن یا نا مناسب بودن تعویض گردد

۴) خاموشی طولانی دستگاه

اگر گرمکن روغن درست کار کند جذب روغن توسط مبرد را می توان به حداقل رساند . اگر دستگاه در محلی با آب و هوای کثیف نصب شده باید آب سیستم خنک کاری روغن را تخلیه کرد کاهی تخلیه روغن مناسب تر است

توربین

توربین های تک محوره

نحوه کار یک توربین گازی به این صورت است که ابتدا هوای تازه از طریق کانال ورودي ، وارد توربین شده و سپس هواي ورودي به کمک یک کمپرسور محوري فشرده می شود . پس از آن به هوای فشرده شده،سوخت گاز تزریق گردیده و می سوزدو طی این فرآیند، سطح انرژی آن افزایش می یابد

توربینهای دو محوره

در توربین گازی دو محوره ، هواي محیط توسط یک کمپرسور مکیده شده و فشار آن افزایش می یابد . هواي فشرده شده در محفظه احتراق با گاز مخلوط شده و شعله ور می شود و سطح انرزي آن افزایش می یابد.
انرژي حاصل از گاز داغ به پره های توربین فشار قوي برخورد کرده که قسمتی از انرژي آن آزاد شده و به انرژي
مکانیکی تبدیل شده و کمپرسور محوري را به حرکت در می آورد . انرژي آزاد شده ، به پره هاي توربین فشار ضعیف نیز برخورد کرده و باعث چرخش آن و همچنین چرخش کمپرسور گازمی شود . سرانجام گازهاي سوخته شده ، با فشار و حرارت پایین ، به اتمسفر رها می شود.

به منظور آشنایی بهتر با سیکل ساده توربین گازی ، ابتدا چهار مرحله سیکل کار موتورهاي رفت وبرگشتی را بررسی می کنیم. در یک موتور چهار زمانه ، قدرت خروجی موتور بصورت متقاطع می باشد . زیرا در مرحله تخلیه ، فشار گازهاي محترق شده کاهش می یابد و در این مرحله افت فشار بوجود می آید.

متن کامل مقاله را درلینک زیر مطالعه فرمایید:

دانلود

دانلود انیمیشن توربین گاز

دانلود انیمیشن توربین گاز

دانلود فیلم اموزشی توربین های گازی به صورت انیمیشن

دراین فیلم شما با نحوه عملکرد سیکل نیروگاه گازی ومجموعه اجزای نیروگاه اشنا خواهید شد.

نحوه ورود هوا به کمپرسور وفشارسازی کمپرسور برای تامین هوای مورد نیاز احتراق درمحفظه احتراق یا چمبر و ورود هوای داغ پر انرژی به توربین گاز وبرخورد با پره های توربین گاز وایجاد حرکت دورانی حاصل از گشتاور ر دراین انیمیشن میتوانید مشاهده فرمایید.

فیلم اموزشی نیروگاه گازی را میتوانید از لینک زیر دریافت نمایید.

دانلود

پسورد : www.spowpowerplant.blogfa.com

کمپرسور پیستونی( Reciprocating Compressor )

کمپرسور پیستونی( Reciprocating Compressor )

این نوع کمپرسور اغلب در سیستم تبرید مورد استفاده قرار می گیرد و ممکن است قدرت آنها از چند دهم اسب تا چند صدم اسب خواهد بود و می توان از یک سیلندر ویا چند سیلندر تشکیل شده باشد.

امروزه در صنعت تبرید بیشتر از کمپرسورهای پیستونی استفاده می شود . در این نوع کمپرسور ها نیز از حرکت رفت و آمدی پیستون سیال را متراکم می نمائیم .
این نوع کمپرسور اغلب در سیستم تبرید مورد استفاده قرار می گیرد و ممکن است قدرت آنها از چند دهم اسب تا چند صدم اسب خواهد بود و می توان از یک سیلندر ویا چند سیلندر تشکیل شده باشد . سرعت دورانی محور کمپرسور ممکن است از ۲ تا ۶ ( r . s -۱ ) تغییر نماید . در کمپرسور ها ممکن است موتور و کمپرسور از هم جدا بوده که کمپرسور های باز نامیده می شوند . ( Hermiticaly Compressor ) خواهیم داشت که بیشتر در یخچالهای منزل که موتور کوچکی دارند از این نوع کمپرسورها استفاده می شود .
کمپرسورهای باز با قدرت های بالا غالباً افقی بوده و ممکن است دو عمله نیز باشند . در حالی که کمپرسورهای بسته معمولاً عمودی و یک مرحله می باشند .
ـ تقسیم بندی کمپرسورهای پیستونی :
الف) از نظر قدرت برودتی به شرح زیر تقسیم بندی می شوند :
۱) ریز ـ تا۵/ ۳ kw/h ( ۳۰۰ کیلو کالری در ساعت)
۲) کوچک ـ از۵ / ۳ تا ۲۳ kw/h ( ۳ تا ۲۰ هزار کیلو کالری در ساعت )
۳) متوسط ـ از ۲۳ تا ۱۰۵ kw/h ( ۲۰ تا ۹۰ هزار کیلو کالری در ساعت )
۴) بزرگ ـ بیش از ۱۰۵ kw/h ( بیش از ۹۰ هزار کیلو کالری در ساعت)
ب) از نظر مراحل تراکم به کمپرسورهای یک مرحله ای وکمپرسورهای دو یا سه مرحله ای .
ج) از نظر تعداد حفره کارگر به حرکت ساده به طوری که مبرد فقط در یک طرف پیستون متراکم می شود و حرکت دوبل که مبرد به نوبت در هر دو طرف پیستون متراکم می شود .
د) از نظر سیلندر به تک سیلندر و چند سیلندر .
و) از نظر قرار گرفتن محور سیلندرها به افقی و قائم و زاویه ( V شکل و مایل)
ر) از نظر ساختمان سیلندر و کارتر به ترکیبی و انفرادی .
م) از نظر مکانیزم میل لنگ و شاتون به بدون واسطه ( معمولی ) و با واسطه .

● اجزاء کمپرسور پیستونی تناوبی :
▪ کارتر
در کمپرسورهای قائم و V شکل کارتر یک قسمت اساسی برای اتصال قسمتهای مختلف است و ضمناً نیروی ایجاد شده را تحمل می کند لذا باید سخت و مقاوم باشد .
کارتر های بسته تحت فشار مکش بوده و مکانیزم میل لنگ و شاتون و روغن کاری در آن قرار می گیرد و برای کنترل سطح روغن شیشه روغن نما و برای دسترسی به مکانیزم میل لنگ و شاتون و پمپ روغن درپوشهای حفره ای و جنبی وجود دارد . در کمپرسورهای کوچک معمولاً یک درپوش حفره ای وجود دارد , به فلانژ بالائی کارتر سیلندر متصل می گــردد . در کمپرسور های متوسط بزرگ کارتر و سیلندر با هم ریخته می شوند .
این امر باعث کم شدن تعداد برجستگی ها و هرمتیک بودن کمپرسور و درست قرار گرفتن محور سیلندر ها نسبت به محور درز ( سوراخ ) زیر یاطاقان میل لنگ می شود .
کارتر کمپرسور معمولاً از چدن ریخته شده بوده و در کمپرسور های کوچک از آلیاژ آلومینیوم می باشد.
▪ سیلندرها :
در کمپرسورهای عمود ( قائم ) و V شکل بدون واسطه بصورت مجموعه دو سیلندر یا بصورت مجموع سیلندرها می سازند . در سیستم کارتر بوش داخلی پرس می شود که باعث کم شدن خورندگی و ساده شدن تعمیرات می گردد و در صورت سائیده شدن قابل تعویض هستند . مجموعه سیلندرها دارای کانال مکش و رانش مشترک می باشند . تحولات در داخل سیلندر عبارت است از مکش و تراکم رانش مبرد است و بدنه سیلندر نیروهای فشار گاز و فشردگی رینگها و نیروی نرمال مکانیزم میل لنگ و شاتون را تحمل می کند .
▪ پیستون:
در کمپرسورهای عمودی وV و VV شکل بدون واسطه پیستون های تخت عبــوری بکــار می رود . ولی در کمپرسورهای غیر مستقیم الجریان ساده تر و غیر عبوری می باشد . در پیستون های عبوری که فرم کشیده تری دارند و سوپاپ مکش روی آن قرار دارد کانالی وجود دارد که از طریق این کانال بخار مبرد از لوله مکش به سوپاپ مکش هدایت شده . در کمپرسورهای اتصال مستقیم با اتصال پیستون به شاتون به وسیله اشپیل های شناور پیستونی (۳ گژنپین ) انجام می گیرد .
پیستون بدون رینگ معمولاً از چدن یا فولاد با کربنیک پائین ساخته می شود . پیستون کمپرسورهای افقی از چدن یا فولاد با تسمه های بابیتی در قسمت پائین می باشد . مهره و پیستون از جنس فولاد است . در پیستون های تخت لوله ای سوراخ های زیر گژنپین باید در یک راستا و عمود بر محور پیستون باشد . ( برای اینکه در جمع کردن پیستون با شاتون پیستون نسبت به محور سیلندر کج نباشد . در پیستون های دیسکی سوراخ زیر میله باید در یک راستای سطح خارجی پیستون وسطح نگهدارنده لوله عمود بر محور پیستون باشد. شیارهای رینگ ها باید موازی هم بوده و سطوح خارجی آنها عمود بر پیستون باشد . مفصل اتصال پیستون و شاتون ( دسته پیستون ) کاملاً شناور و آزاد است و می تواند در داخل بوش شاتون و بوشهای بدنه پیستون آزادانه بچرخد .
▪ رینگ های پیستون :
برای جلوگیری از نفوذ گاز متراکم شده به کارتر از رینگ های فشار( کمپرسی) و همچنین جلوگیری از خروج روغن از آن از رینگ های روغن استفاده می شود که در شیارهای مخصوص روی پیستون سوار می شوند . رینگ ها باید حتی الامکان کیپ شیار و در عین حال مانع حرکت آزاد پیستون در سیلندر نشوند . تعداد رینگهای آب بندی بستگی به دور کمپرسور دارد .
▪ واسطه ( کریسکف):
واسطه برای اتصال رابط و شاتون بکار می رود و یک حرکت متناوب مستقـــیم الخط را طی می کند .
▪ شاتون :
شاتون برای اتصال میل لنگ به پیستون یا به واسطه بکار می رود و جنس آن فولاد و بعضی اوقات چدن تشکیل شده از میله با دو سر که یکی از آنها اتصال ثابت دارد و دیگری مجزا یا جدا شونده است .
▪ میل لنگ :
این قسمت کمپرسور یکی از مهم ترین اجزاء می باشد و باید خیلی سخت و محکم و در سطح اتصال آن نباید در شرایط مختلف خورندگی ایجاد شود . میل لنگ یک محور چرخنده است که در حرکت دورانی الکتروموتور را توسط شاتون به حرکت متناوبی پیستون در داخل سیلندر تبدیل می کند .
▪ چرخ طیّار :
چرخ طیار را روی میل لنگ بر خار نشانده و با مهره محکم می کنند . در زمانی که برای انتقال انرژی از الکتروموتور به میل لنگ از تسمه استفاده می شود .
▪ کاسه نمد :
برای محکم نمودن میل لنگ و آب بندی خروجی آن از بدنه کارتر در کمپرسورهای اتصال مستقیم از کاسه نمد استفاده می شود . درست کارکردن کاسه نمد باعث آب بندی بودن کمپرسور و در نتیجه کار صحیح کمپرسور می شود .
کاسه نمدها را می توان به دو گروه تقسیم کرد:
۱) کاسه نمد کمپرسورهای اتصال مستقیم با حلقه های اصطکاک , آب بندی بین حلقه ها در اثر ارتجاع فنر یا سیلیفون یا دیافراگم و همچنین به کمک وان روغنی که ایجاد سیفون هیدرولیکی می نماید می باشد . به گروه اول می توان کاسه نمد سیلیفونی و فنری را نسبت داد .
۲) کاسه نمد کمپرسورهای اتصال غیرمستقیم دارای خانه های زیاد با حلقه های برجسته فلزی یا مسطح با قشر فلوئور است . کاسه نمد سیلیفونی با گشتاور ( کوپل) اصطحکاک برتری .
فولاد تا سالهای اخیر در کمپرسورهای کوچک فریونی با میل لنگ به قطر تا ۴۰ میلی متر مورد استفاده قرار می گرفت. کاسه نمد فنری ـ کار کمتر در تهیه ، معتبر در کار ، مونتاژ ساده و کار ساده تر مزایای کاسه نمدهای فنری با سیفون روغنی است .
بهترین نوع کاسه نمد فنری با کوپل یا چفت های حلقه ای می باشد که یکی از گرافیت مخصوص و دیگری از فولاد سخت می شوند .
▪ سوپاپ های مکش و رانش کمپرسور :
در کمپرسورهای مبرد این نوع سوپاپ ها خودکار است و بر اثر اختلاف فشار در دو طرفه صفحه سوپاپ بازشده و در اثر ارتجاع فنر صفحه بسته می شود . مورد استفاده بیشتر را نوع نواری ( صفحه های باریک ) ارتجاعی بدون فنر دو طرفه دارد که یک آب بندی قابل اطمینان را بوجود آورده و مقطع عبور زیادی را ایجاد می نمایند . صفحات این نوع سوپاپ ها از صفحات باریک فولادی که خاصیت ارتجاعی دارند و به ضخامت۲/ ۰ تا ۱ میــلی متر هستــند تهیــه می شوند و فرم صفحات مختلف است . اجزاء اساسی هر سوپاپ عبارتند از صفحه سوپاپ , پایه ( نشیمنگاه) که صفحه روی آن می نشیند و مقطع عبور و بست را تشکیل می دهند و محدود کننده صفحات روی پایه . در بعضی از سوپاپ ها صفحه سوپاپ به وسیله فنر به پایه فشرده می شود . و در کمپرسورهای فریونی غیر مستقیم الجریان سوپاپ های مکش و رانش در قسمت فوقانی سیلندر ( تخته سوپاپ ) واقع هستند .
▪ سوپاپ محافظ :
برا ی حفاظت کمپرسور از سانحه در مواقع ازدیاد سریع فشار رانش از سوپاپ محافظ استفاده می شود . ازدیاد سریع فشار رانش ممکن است بخاطر نبودن آب در کندانسور یا بسته بودن شیر رانش در زمان روشن کردن کمپرسور بوجود بیاید .
در زمان کار کمپرسور سوپاپ محافظ باید بسته باشد و وقتی فشار از حد مجاز در سیلندر تجاوز کرد آن باز شده و قسمت رانش را با قسمت مکش کمپرسور مرتبط می کند . فشار باز شدن سوپاپ محافظ بستگی به اختلاف فشار محاسبه ای ( Pk - Po ) دارد که معمولاً برای آمونیاک و فریون ۲۲ حدود۲ / ۱ مگا پاسکال یا ۱۲ کیلو گرم بر سانتی متر مربع و برای فریون ۱۲ حدود۸/ ۰ مگا پاسکال می باشد که باز شـدن ســـوپاپ محافــظ در اختلاف فــشار۶/ ۱ ( آمونیاک و فریون ۲۲ ) و یک مگا پاسکال برای فریون ۱۲ تنظیم می شود .
▪ بای پاس (میان بر) :
دو نوع میان بر وجود دارد :
برای کم کردن قدرت مصرفی در استارت کمپرسورهای متوسط و بزرگ از میان بر استارت استفاده می شود و قسمت رانش را به قسمت مکش متصل می کند و در نتیجه در زمان استارت نیروی وارد بر پیستون حذف می شود یعنی کمپرسور در خلاص کار می کند و قدرت فقط برای حرکت کمپرسور و جبران نیروی انرسی و مقاومت مصرف می گردد .
میان بر گاز ممکن است دستی یا اتوماتیک باشد که در این صورت برای باز شدن از یک شیر برقی (سلونوئید) استفاده می شود و بسته شدن از طریق ضربان رله زمانی وقتی الکتروموتور دور کافی را بدست می آورد صورت می پذیرد .
در میان بر دستی زمان استارت کمپرسور شیرهای رانش و مکش هر دو بسته هستند در حالی که در میان بر اتوماتیک هر دو باز بوده و در لوله برگشت یک سوپاپ برگــشت بکار می رود. در کمپرسورهای کوچک و متوسط تا قدرت ۲۰ کیلو وات معمولاً از میان بر استارت استفاده نمی شود و الکتروموتور آنها با گشتاور استارت بیشتری انتخاب می گردد . در کمپرسور های بزرگ برای تغییر بازده برودتی از میان بر تنظیم استفاده می شود و بطور دستی یا اتوماتیک قسمت سیلندر به قسمت مکش متصل می گردد و بدین ترتیب بازده برودتی حدود ۴۰ الی ۶۰ درصد کاهش می یابد .
● سیستم روغن کاری :
روغن کاری گرم شدن و خورندگی قسمت های متحرک کمپرسور را کم کرده و انرژی مصرفی برای مقاومت را تقلیل می دهد . همچنین باعث آب بندی بیشتر کاسه نمد , رینگ ها و سوپاپ ها می گردد . در کمپرسور های مبرد از روغن های مخصوص طبیعی و مصنوعی استفاده می گردد و برای مبردهای مختلف روغن های متفاوتی بکار می رود .( با عددی که نشان دهنده غلظت روغن است) روغن کاری کمپرسورها به دو طریق فشاری یک پمپ کوچک روغن را تحت فشار به یاطاقانها ثابت متحرک می رساند . پمپ های مورد استفاده چرخ دنده ای یا پروانه ای و یا پیستونی می باشند که یک سوپاپ آزاد کننده فشار در مسیر پمپ سوار می شود تا از تمرکز فشار زیاد بر روی پمپ جلوگیری بعمل آورد . نیروی لازم برای کار پمپ از گردش میل لنگ تأمین می گردد که در پمپ های پیستونی شناور انتهای میل لنگ یک بادامک یا برجستگی خارج از مرکز خواهد داشت و در پمپ چرخ دنده ای سر میل لنگ نیز چرخ دنده ای برای چرخش پمپ دارد و در پمپ های پروانه ای انتهای میل لنگ دارای یک وسیله گرداننده پره ای می باشد .
در قسمت مکش پمپ یک فیلتر قرار می گیرد . توری در ارتفاع ۱۰ تا ۱۵ میلی متر از کف کارتر قرار گرفته و تعداد خانه های ( شبکه های توری) فیلتر بین ۱۵۰ تا ۳۰۰ عدد در یک سانتی متر مربع می باشد . در قسمت رانش پمپ روغن کمپرسورهای متوسط و بزرگ یک فیلتر صفحه ای شکافدار توری ریز قرار می گیرد که با کمک آنها وقتی محور بطور دستی می گردد متناوباً تمیز می شود . فاصله بین صفحات۰۳/ ۰ تا۱/ ۰ میلی متر است . فشار روغن از طریق سوپاپ مخصوص کنترل می شود و در صورت افزایش فشار باز شده و روغن از قسمت رانش پمپ به کارتر می ریزد . معمولاً فشار روغن بین۶/ ۰ تا ۲ اتمسفر بیش از فشار در کارتر است و هر چقدر فشار روغن زیاد باشد مقدار روغن خروجی از کمپرسور نیز زیادتر می گردد . وقتی از یاطاقانهای لغزنده استفاده می شود معمولاً تمام روغن از پمپ به یاطاقان فرستاده شده و از طریق کانال های مخصوص در میل لنگ به یاطاقان شاتون و همچنین کاســه نمد می رود . وقتی میل لنگ با یاطاقان نوسانی استفاده می شود , روغن به کاسه نمد داده شده و از شیار میل لنگ به قسمت های دیگر روانه می گردد . کمپرسور ها معمولاً دارای کلید اطمینان روغن هستند که به فشار روغن کار می کند و هر زمان که فشار روغن به دلیل خرابی سیستم افت کند موتور را از کار می اندازد و کمپرسور خاموش می شود . در سیستم روغن کاری به طریق پاشش کارتر تا نیمه های یاطاقان اصلی پر از روغن می شود و زمانی که میل لنگ می چرخد ته شاتون ( قسمت خمیده ) وارد روغن شده و با گردش میل لنگ روغن را به قسمت انتهای سیلندر و پیستون می پاشد . گاهی قسمت انتهای شاتون در اتصال به میل لنگ دارای محفظه ای است که در ورود به روغن پر شده و وارد یاطاقان می شود . سیستم روغن کاری پاششی معمولاً در کمپرسور های کوچک مورد استفاده قرار می گیرد .
در بعضی از کمپرسور ها برای سیستم روغن کاری خنک کننده آبی یا هوائی بصورت کوئل در نظر می گیرند . در کمپرسور های معمولی مخزن روغن همان کارتر کمپرسور است ولی در کمپرسورهای واسطه ای مخزن روغن مخصوصی در نظر گرفته میشود.
در کمپرسور هرمتیک از روغن کاری فشاری استفاده می شود .
● سیستم خنک کنندة کمپرسور :
کمپرسورها به دو علت اساسی خنک می شوند که یکی اصطکاک بین قطعات متحرک و دیگری افزایش درجه حرارت ناشی از تراکم بخار است . خنک کردن کمپرسور به منظور جلوگیری از کاهش کارآیی کمپرسور و همچنین نگهداری کیفیت روغن و روغن کاری است .
روغنی که برای روغن کاری به گردش در می آید وسیله خوبی برای جـــذب و دفع گرمــا می باشد و به همین جهت در بعضی از کمپرسورها خنک کننده مخصوص بــرای روغن بکار می رود و در بعضی از کمپرسورها سطح خارجی را پره دار می سازند تا سطح تبادل حرارتی آنرا با هوا زیاد کنند و در بعضی انواع نیز از یک موتور و پنکه جهت عبور هوا بر روی کمپرسور و خنک کردن آن استفاده می شود .
در سیستم هائی که تقطیر مبرد به وسیله آب خنک کننده برج است , کمپرسور نیز با آب خنک می شود . برای گردش آب لوله با محفظه ای در قسمت مجاور بالای سیلندر در نظر گرفته می شود که به کیسه خنک کننده معروف است . کمپرسور های هرمتیک ( بسته ) که موتور و کمپرسور در یک پوسته قرار دارند بیشتر در معرض داغی قرار دارند و معمولاً با عبور دادن بخار قسمت مکش کمپرسور با اطراف موتور گرمای آنرا می گیرند

چیلر ابی

دانلود جزوه اموزشی چیلرهای ابی

با تشکر از جناب مهندس سلیمانی ووبلاگ وزین مهندسان زرنگ

برای دانلود جزوه اموزشی چیلرهای ابی به لینک زیر مراجعه فرمایید.


فهرست مندرجات صفحه
تعريف چيلرآبي
معرفي اجزاء اصلي سيستم تراكمي چيلر آبي
كمپرسور
كندانسور
شيرانبساط
اواپراتور
تجهيزات كنترلي
(Solenoid Valve)  - شيرمغناطيسي
(High Pressure Control) - كنترل فشار رانش
(Low Pressure Control)  كنترل فشار مكش
(Oil Pressure Control)  - كنترل فشار روغن
(Water Flow Switch ) - فلوسوئيچ آب
(Thermostat) -- ترموستات
(Anti Freeze) -- آنتي فريز
تجهيزات الكتريكي
كنترل سه فاز
(Glass Fase) -- فيوزشيشه اي
(Internal Protection Relay) -- رله الكترونيكي كمپرسور
(Thermal Overload Relay) ( رله اضافه جريان (بي متال
(Circuit Breaker) (كليداتوماتيك (مدارشكن
(Power Contactor) - كنتاكتورقدرت
(Control Contactor) -- كنتاكتورفرمان
(InStantanius Auxillary Contact) -- كنتاكت اضافه
(Timer Contactor) - تايمربوبين دار
(Timer Delay Aux:Llary Contactor) -تايمرنيوماتيكي
(Industrial Relay) رله صنعتي
شاسي استپ واستارت
(Compressor Change Switch) -كليد تعويض كمپرسورها
(Interlock) -هم قفليهاي الكتريكي
شيرآلات ولوازم جنبي روي خطوط لوله ارتباطي
(Relief Valve) - شيراطمينان
(Charging Valve) شيرشارژينگ
(Service Valve) - شيردستي
(Filter Drier) -- فيلتردراير
(Sight Glass) - سايت گلاس
(Copper Vibration Absorber) - لرزه گيرمسي
نمايشگرها
(Signal Lamps) - چراغهاي سيگنال
(Pressure Gauge) - گيجهاي فشار
نمايش دهنده درجه حرارت آب برگشتي به اواپراتور
نمايشگركاركردكمپرسور
مدارعيب ياب

برخي تعاريف ضروري
توان برودتي وتوان الكتريكي

بازده کمرسور C.O.P

(Capacity control system ) 

سیستم تغییر ظرفیت کمپرسور

برخي تعاريف الكتريكي

حمل دستگاه چيلر آبي
دستورالعمل نصب چيلر آبي
دستورالعمل راه اندازي چيلر آبي
يادآوري برخي نكات قبل از راه اندازي
انجام عمليات تست فشارورفع نشتي احتمالي
انجام عمليات تخليه گازازت ووكيوم كردن دستگاه
انجام عمليات تكميل نصب دستگاه
شارژگازوراه اندازي دستگاه
عمليات تعويض روغن كمپرسور
اشكالات حين راه اندازي
دستورالعمل نگهداري وسرويس چيلر آبي 


دانلود

دانلود کتابچه راهنمای هوای فشرده از شرکت Copco

سلام

دانلود کتابچه راهنمای هوای فشرده از شرکت Copco

با توجه به گستره وسیع کاربرد هوای فشرده درصنایع مختلف اعم از کالیبراسیون واندازه گیری ودستگاههای CNC ونیروگاههای گازی اشنایی با فرایند تولید واستفاده از هوای فشرده میتونه کمک بزرگی برای همه دوستان باشه

این راهنما توسط عده ای از بهترین متخصصان این امر تهیه شده ودانلود اونو به همه کسایی که به نحوی با کمپرسورها وهوای فشرده سروکار دارند توصیه میکنم

موفق باشیم

DOWNLOAD

mIROR

------------

با توجه به فیلتر شدن لینک ها وبنا به درخواست دوستان عزیز کتاب را در سرور دیگری بارگذاری نموده ایم که از طریق لینک زیر میتوانید دانلود نمایید:

دانلود کتابچه راهنمای هوای فشرده از شرکت Copco

اشنایی با کمپرسورها وهوای فشرده

سلام به دوستان عزیز

اشنایی با هوای فشرده وکمپرسورها که جزئی جداناپذیر درفرایندهای کنترلی وخنک کاری درصنایع بزرگ

هستند اجتناب ناپذیر میباشد

فایلی مفید برای اشنایی بیشتر با این مقولات

موفق باشید


دانلود