دانلود پروژه خوردگی

دانلود پروژه خوردگی

عنوان پروژه :

خوردگی فلزات و مشکلات ناشی از آن در تجهیزات و ماشین آلات صنعتی و روش های جلوگیری از آن
« به همراه بررسی پدیده ی خوردگی در صنایع غذایی »

فهرست مطالب 

مقدّمه
مفهوم خوردگی و زنگ زدن فلزات ( مشخصات عمومی )
انواع خوردگی
- خوردگی شیمیایی ( زنگ زدن مستقیم یا اکسیداسیون )
- خوردگی الکتروشیمیایی ( خوردگی آبی )
- حمله یکنواخت
- خوردگی گالوانیک
- خوردگی شکافی
- آبشویی ترجیحی
- خوردگی درون دانه ای
- خوردگی حفره ای
- خوردگی فرسایشی
- خوردگی تنشی
چرا کنترل سرعت فرآیند خوردگی در صنعت امری ضروری است ؟
روش های کنترل و ممانعت از خوردگی
- رنگ زدن
- حفاظت کاتدی
+ آب کاری فلزات
        - گالوانیزاسیون
        - الکترولیز
        - روش جدید پوشش فولاد و چدن با فلز روی
بررسی مشکلات اقتصادی ناشی از خوردگی
- اهمیّت توجّه به خوردگی با ذکر مثالی از سازه های بتنی
- مقايسه پوششهاي رنگ و گالوانيزه از جنبه اقتصادي
- تعيين معيار اقتصادي
- مقايسه قابليّت اعتماد رنگ و گالوانيزه
- نتيجه
دو فلز پُر کاربرد در صنعت و تشریح فرآیند خوردگی آنها
+ آلومینیوم
        - خواص آلومینیوم و آلیاژهای آن
        - آلومینیوم در مقابل خوردگی
        - صورت های مختلف خوردگی آلومینیوم
        - روش های جلوگیری از خوردگی آلومینیوم و آلیاژهای آن
+ آهن
        - ویژگی های آهن
        - آلیاژهای آهن
        - خوردگی در آهن و آلیاژهای آن
        - حلبی
        - آهن گالوانیزه ( سفید )
        - ماهیت آهن گالوانیزه
        - موارد استفاده از آهن گالوانیزه
        - چرا نمی توان از آهن گالوانیزه برای ساخت ظروف بسته بندی مواد غذایی استفاده کرد ؟
بررسی پدیده ی خوردگی در صنایع غذایی
- معرّفی مجتمع صنایع غذایی کماج صبا بعنوان نمونه
- خوردگی در صنایع غذایی
- متوسط عمر ماشين آلات صنعتی
- توجه به پدیده ی خوردگی در بسته بندی محصولات
پیشنهادات
نتیجه گیری
منابع 

متن کامل پروژه خوردگی را ازلینک زیر دریافت نمایید:

دانلود کنید.


عوامل خوردگی کوره دیگ بخار

عوامل خوردگی کوره دیگ بخار

یکی از مشکلات اساسی که می تواند باعث بروز مشکل برای کوره ها باشد، خوردگی در نقاط و وسایل مختلف آن است که ضمن هدر رفتن مقدار زیادی انرژی، آسیب های مکانیکی متعددی به کوره وارد می کند. از آنجا که هر کوره از بخش های متعددی همچون بدنه، اطاقک احتراق (Fire Chamber)، دودکش، مشعل و سایر تجهیزات جانبی تشکیل شده، لذا علل خوردگی و راه حل های پیشنهادی در هر یک از بخش ها به طور مجزا مورد بحث و بررسی قرار می گیرد.


● بدنه کوره :

معمولاً بدنه یا دیواره خارجی کوره ها را از ورقه استیل۱۶/۳ و کف آن را از ورقه ۴/۱ می سازند.

در طراحی ها عموماً اتلاف حرارتی از بدنه کوره حدود ۲ درصد منظور می شود. نوع و ضخامت عایق کاری بدنه داخلی کوره باید طوری در نظر گرفته شود که دمای سطح خارجی کوره بیش از (۱۸۰۰° F) نشود. اصولاً عایق کاری و عایق های به کار رفته در کوره ها از نظر سرویس دهی مناسب، عمر معینی دارند و به مرور زمان ساختمان کریستالی آنها تغییر یافته و ضخامت آنها کم می شود و این تغییرات ساختمانی سبب تغییر ضریب انتقال حرارت و اتلاف انرژی به بیرون خواهد بود. مطالعات میکروسکپیک و کریستالوگرافیک چند نمونه عایق کار کرده، با نوع تازه آن موید این مطلب است. در صورتی که عایق دیواره های کوره بر اثر بنایی ناصحیح، عدم انجام صحیح Curing بر مبنای دستورالعمل، حرارت زیاد و یا شوک های حرارتی ترک بردارد، نشت گازهای حاصل از احتراق که عبارتند از: So x، No x، N۲،Co۲ (درصورتی که نفت کوره به عنوان سوخت مصرف شود) و بخار آب در لابلای این ترک ها و تجمع آنها در لایه بین بدنه کوره و عایق دیواره و سرد شدن تدریجی آنها تا دمای نقطه شبنم، باعث خوردگی بدنه می شود.

تداوم این امر ضمن اتلاف مقدار بسیار زیاد انرژی (از طریق بدنه کوره به محیط اطراف)، باعث ریختن عایق و در نتیجه اتلاف بیشتر انرژی و گسترش خوردگی بر روی بدنه کوره و سایر نقاط آن خواهد شد.

در یک بررسی ساده بر روی کوره ای که چندین سال از عمر عایق آن می گذشت ملاحظه شد که دمای اندازه گیری شده واقعی سطح کوره در اکثر نقاط بسیار بیشتر از میزان طراحی است. این مقدار در بعضی از موارد به (۱۸۰۰° F) نیز می رسید.

در این کوره ضمن جدا شدن عایق از دیواره کوره و گسترش خوردگی در نقاط مختلف بدنه، گرم شدن بدنه کوره نیز موجب خم شدن دیواره ها شده و سرعت خوردگی را افزایش داده و باعث خرابی قسمت های مختلف کوره شده است. به طور کلی برای جلوگیری و یا کاهش مشکلات خورندگی بر روی بدنه کوره لازم است به هنگام تعمیرات اساسی ضمن توجه به عمر عایق دیواره در صورتی که عمر آنها از حد معمول گذشته باشد (البته با توجه به درجه حرارتی که درهنگام کار کردن واحد درمعرض آن بوده اند) آنها را با عایق مناسب و استاندارد تعویض کرد و در صورت وجود ترک (قبل و یا بعد از بنایی)، محل ترک ها را با الیاف مخصوص KAOWOOL پر کرد. همچنین در بنایی، عملیات Curing را مطابق دستور العمل انجام داد تا پیوند هیدرولیکی در عایق های بکار رفته در بنایی، به پیوند سرامیکی تبدیل شده و میزان رطوبت باقیمانده در دیواره از ۰.۴ gr/m۲ بیشتر نشود.

البته چنانچه Ceramic Fiber (الیاف سرامیکی) به عنوان عایق دیواره کوره مورد استفاده قرار گیرد، بدلیل عدم نیاز به Curing و Drying و سبکی وزن، مشکلات احتمالی استفاده از عایق های نیازمند به Curing را نخواهیم داشت. ضمن این که عمر بیشتر و چسبندگی بهتری به دیواره، نسبت به دیگر عایق های موجود دارند.

تیوب ها یا لوله های داخل کوره

معمولاً کوره ها متشکل از دو بخش RADIATION و CONVECTION هستند که بایستی ظرفیت گرمایی (DUTY) کوره از نظر درصد، تقریباً به نسبت۷۰ و۳۰ درصد بین این دو بخش تقسیم شود.

از آنجا که لازم است سیال به اندازه دمای مورد نظرگرم شود بایستی حرارت مورد نیاز خود را از طریق هدایتی از لوله ها و تیوب های داخل کوره دریافت کند، این لوله ها نیز حرارت مورد نیاز برای این انتقال حرارت را از طریق تشعشعی و جابجایی در اثر احتراق سوخت در داخل کوره جذب می کنند. انتخاب آلیاژ مناسب جهت لوله با توجه به نوع سیال و ترکیبات آن و میزان حرارت دریافتی توسط لوله و در معرض شعله قرار گرفتن از اهمیت بسزایی برخوردار است.

مسائلی که به بروز مشکلاتی برای تیوب ها منجر می شود عبارتند از:

سرد و گرم شدن ناگهانی لوله، گرم شدن بیش از حد لوله و بالا رفتن دمای تیوب از حداکثر مجاز آن، در معرض شعله قرار گرفتن و برخورد شعله به لوله (impingement) ، ایجاد یک لایه کُک بر روی جداره داخلی لوله، Carborization، Hogging، Bending، Bowing، Sagging، Creeping، خوردگی جداره داخلی لوله بر اثر وجود مواد خورنده در سیال عبوری، خوردگی جداره بیرونی لوله در اثر رسوبات حاصل از احتراق سوخت مایع بر روی جداره خارجی لوله، کارکرد لوله بیش از عمر نامی آن (۸۰ هزار الی ۱۱۰ هزار ساعت)

سرد و گرم شدن ناگهانی لوله، ممکن است به Creeping (خزش) که نتیجه آن ازدیاد قطر لوله می باشد منجر شود که در این صورت احتمال پارگی لوله و شکنندگی آن را افزایش می دهد. چنانچه در اثر Creeping مقدار ازدیاد قطر از ۲ درصد قطرخارجی لوله بیشتر شود، لوله مزبور بایستی تعویض شود.

در یک اندازه گیری عملی که برای برخی از تیوب های هشت اینچی و شش اینچی کوره (کوره تقطیر در خلا) H ۱۵۱ در هنگام تعمیرات اساسی صورت پذیرفت، محاسبات زیر بدست آمد:

□ برای تیوب "۸

▪ OD = ۸.۷۵ (اندازه گیری شده)

▪ (OD = (۰.۱۲۵ (افزایش قطر لوله)

▪ (OD ALLOWABLE = (۸.۶۲۵x۲%=۰.۱۷۲۵

هنوز می توان از تیوب مزبور استفاده کرد.

□ برای تیوب "۶

▪ OD = ۸.۶۲۵ (اصلی)

▪ OD = ۸.۶۷۵ (اندازه گیری شده)

▪ (OD = (۰.۰۵ (افزایش قطر لوله)

▪ (OD ALLOWABLE = (۶.۶۲۵x۲%=۰.۱۳۲۵

که هنوز می توان از تیوب شش اینچی مزبور استفاده کرد.

همان طور که مشخص است تیوب ۸ حدوداً بیش از دو برابر تیوب ۶ ازدیاد قطر داشته است

□ برای لوله "۶

▪ کوره H ۱۰۱ (اتمسفریک)

▪ OD =۶.۶۲۵ (اصلی)

▪ OD = ۶.۶۳۵ (اندازه گیری شده)

▪ OD =۰.۰۱ (اندازه قطر لوله)

▪ (OD ALLOWABLE = (۶.۶۲۵x۲%=۰.۱۳۲۵

بالا نگه داشتن دمای پوسته تیوب ها سبب کاهش مقاومت لوله ها و کاهش عمر مفید و گارانتی حدود یکصد هزار ساعتی آنها می شود.

تجربه نشان داده است که اگر به مدت ۶ هفته سطح خارجی (پوسته) لوله ای ۹۰۰°C بیش از مقدار طراحی در معرض حرارت قرار بگیرد، عمر تیوب ها نصف می شود.

یکی دیگر از مشکلات پیش آمده برای لوله ها، برخورد شعله به لوله (IMPINGEMENT) است، که باعث OVER HEATING کوره و در نهایت HOT SPOT می شود. این امر می تواند ضمن لطمه زدن در محل برخورد شعله به لوله، باعث تشدید عمل کراکینگ مواد داخل لوله شود و مواد مزبور به دو قسمت سبک و سنگین تبدیل گردند.

مواد سنگین به جداره داخلی لوله چسبیده و کک ایجاد می کنند. به ازای تشکیل یک میلی لیتر ضخامت کک با توجه به ضریب هدایتی کک که برابر مقدار خاصی می باشد برای یک شارژ حرارتی معمول در قسمت تشعشعی کوره H ۱۰۱ (اتمسفریک) می باشد، معادل فرمول زیر است:

می بایستی ۳۰۰°C دمای پوسته تیوب بالاتر رود تا سیال موجود در تیوب به همان دمای موردنظر برسد. در این صورت ملاحظه می شود بالا رفتن دمای تیوب به چه میزان اتلاف سوخت و انرژی، داشته و به طور کلی به مرور زمان چه لطمه ها و آسیب هایی به کل کوره وارد می شود. به عبارت دیگراختلاف دمای پوسته تیوب های کوره که در طراحی عموماً ۱۰۰۰°F بالاتر از دمای متوسط سیال درون آن در نظر گرفته می شود، به مرور زمان با تشکیل کک (با رسوبات بیرونی) بیشتر می شود.

مشکل دیگر که به علت دمای بالا برای تیوب های کوره ها ایجاد می شود خمیدگی در جهت های مختلف این تیوب هاست.

یکی دیگر از مسائلی که باعث خم شدن و شکستگی لوله ها می شود پدیده کربوریزیشن (carborization) است که بر اثر ترکیب کربن با آهن پدید می آید: این واکنش که باعث تولید کربور آهن خواهد شد در دمای بالاتر از ۷۰۰۰°c ایجاد می شود ۷۰۰۰°C)تا ۱۴۰۰۰°C). این حالت عمدتاً در زمان Curing و drying کوره پدید می آید. البته Hot spot نیز بیشتر در این زمان ها اتفاق می افتد.

وجود ناخالصی های مختلف مثل فلزات سدیم، وانادیم، نیکل و غیر...، فلزاتی مثل گوگرد و ازت به صورت ترکیبات آلی در سوخت های مایع، مسائل عدیده ای را باعث می شوند، که از آن جمله کاهش انتقال حرارت از طریق سطح خارجی تیوب به سیال درون تیوب است که به علت تشکیل رسوبات مربوط به ناخالصی های مزبور بخصوص رسوبات فلزی بر روی تیوب هاست. به همین دلیل برای رسیدن به دمای مورد نظر سیال موجود در لوله، مجبور به مصرف سوخت بیشتر خواهیم شد. در نتیجه مشکلات ایجاد گرمای بیشتر در کوره و مسائل زیست محیطی در اثر تشکیل SOX، NOX و ... را خواهیم داشت. از طرفی به دلیل نشست این رسوب ها بر روی تیوب ها مسئله خوردگی و سوراخ شدن پیش خواهد آمد. علت این خوردگی که از نوعHigh temp corrosion می باشد پدیده سولفیدیش است، که در دماهای بین۶۳۰°C تا۷۰۰°C بوقوع می پیوندد. همان طور که گفته شد علت اصلی آن وجود عناصر وانادیم، گوگرد، سدیم و نیکل به همراه گازهای حاصل از احتراق سوخت است.

فلزات ذکر شده (بصورت اکسید) به کمک این گازها بالا رفته و بر روی تیوب های قسمت تشعشع و جابه جایی می نشینند. خوردگی و سوراخ شدن تیوب، بر اصل اکسید شدن و ترکیب عناصر مزبور باآلیاژ تیوب استوار بوده که باعث ایجاد ترکیبات کمپلکس با نقطه ذوب پایین می شود.

ترکیب اولیه پس از Na۲SO۴، سدیم وانادایت به فرمول Na۲O۶V۲O۵ است که نقطه ذوب آن ۶۳۰۰°C می باشد. عمده ترکیبات دیگر که شامل کمپلکسی از ترکیب پنتا اکسید وانادیم و سدیم است در شرایطی به مراتب ملایم تر و درجه حرارتی پایین تر ذوب می شوند. برای مثال مخلوط وانادیل وانادیت سدیم به فرمول Na۲OV۲O۴۱۱V۲O۵ و متاوانادات سدیم به فرمول Na۲OV۲O۵ در ۵۲۷۰°C ذوب می شوند. ذوب این کمپلکس ها شرایط مساعدی را برای تسریع خوردگی بوجود می آورد. در اینجا ترکیبات حاصل از احتراق نه تنها به نوع ناخالصی بلکه به نسبت آنها نیز بستگی کامل دارد و در مورد وانادیم میزان سدیم از اهمیت خاصی برخوردار است.

البته سدیم وانادیل وانادایت پس از تولید و ذوب شدن، با فلز آلیاژ مربوط به تیوب، ترکیب شده و بر اثر سیال بودن از سطح آلیاژ کنار رفته و سطوح زیرین تیوب مربوطه در معرض ترکیب جدید قرار می گیرد. ادامه این وضع به کاهش ضخامت تیوب و در نهایت سوراخ شدن و از کار افتادن آن منجر می شود.

● مشعل ها و سوخت:

نقش کیفیت نوع سوخت و نوع مشعل ها شاید از همه عوامل یاد شده در کارکرد مناسب، راندمان بیشتر و کاهش خوردگی بیشتر برخوردار باشد. چنانچه از مشعل های Low excess air و یا نوع مرحله سوز (stage burning) استفاده شود، هوای اضافی مورد نیاز به میزان قابل توجهی کاهش یافته و به حدود ۳ و ۵ درصد می رسد که ضمن کاهش و به حداقل رساندن گازهای خورنده و مضر زیست محیطی مثل NOx، Sox، در بالا بردن راندمان کوره بسیار موثر خواهد بود. این امر باعث کاهش مصرف سوخت شده، و در نتیجه باعث کاهش گازهای حاصل از احتراق و آسیب رساندن به تیوب ها، بدنه کوره و دود کش ها خواهد شد. وضعیت عملکرد مشعل ها بایستی به طور مداوم زیر نظر باشد. بد سوزی مشعل ها می تواند دلایل متضادی، همچون نامناسب بودن سوخت، عیب مکانیکی، کک گرفتگی سرمشعل و یا بالعکس، رفتگی و سائیدگی (Errosion) بیش از حد سر مشعل، کمبود بخار پودر کننده و ... داشته باشد. وجود مواد آسفالتی، افزایش مقدار کربن باقیمانده (carbon residue) ، بالا بودنِ مقادیر فلزات مثل سدیم، نیکل، وانادیم و هم چنین سولفور در سوخت مسائل متعددی را در سیستم احتراق ایجاد می کند که این مسائل به طور کلی به دو دسته تقسیم می شوند.

الف) مسائل عملیاتی قبل از مشعل ها و احتراق:

این مسایل در اثر وجود آب و نمک ها و ته نشین شدن آنها در ذخیره سازی نفت کوره بوجود می آیند. در این رابطه عدم تخلیه مداوم مخزن ذخیره سازی، خوردگی و مشکلات ایجاد شده به طور خلاصه عبارتست از:

تشکیل لجن (sludge) در مخزن در اثر عدم استخراج کامل نفت کوره و آب، انباشته شدن لجن در فیلترها در اثر محصولات ناشی از خوردگی و پلیمریزاسیون هیدروکربورهای سنگین به علت اثر کاتالیزوری محصولات ناشی از خوردگی، انباشته شدن لجن و صمغ های آلی در گرم کننده سوخت، گرفتگی و خوردگی در نازل های پودر کننده نفت کوره (Atomizer).

ب) مسائل عملیاتی بعد از مشعل ها و احتراق:

ایجاد خوردگی در مناطق گرم و سرد کوره ها و دیگ های بخار، ایجاد رسوبات بر روی لوله های قسمت جابه جایی کوره و قسمت سوپر هیت دیگ های بخار، کاهش ضریب انتقال حرارتی در اثر رسوبات و در نهایت افت راندمان حرارتی در اثر افزایش دمای گازهای خروجی حاصل از احتراق از دودکش کوره.

در اثر احتراق سوخت هایی که دارای مقادیر زیادی کربن باقیمانده و خاکستر باشند، مقادیر متنابهی رسوب در قسمت های جابه جایی کوره و یا قسمت سوپر هیت دیگ های بخار تولید می شوند. این رسوبات به سختی در اثر عملیات دودزدایی از سیستم خارج می شوند. مسئله سازترین سوخت ها، سوخت هایی است که در آنها نسبت وانادیم به سدیم ۱۲Na کمتر از ۱۰ باشد.

به غیر از مشکلات ایجاد شده توسط اکسیدهای سدیم و وانادیم، فلز نیکل نیز که در سوخت وجود دارد با اکسیژن ترکیب شده و اکسیدهای نیکل را به صورت رسوباتی بر روی لوله ها بوجود می آورد.

برای جلوگیری از ایجاد خوردگی توسط اکسیدهای وانادیم و یا کاهش سرعت آن اقدامات زیر لازم است:

۱) کاهش مقدار اکسیژن موجود در گازهای حاصل از احتراق، که این مقدار اکسیژن را می توان با تنظیم مقدار هوای اضافی کوره یا دیگ بخار کنترل کرد و نسبت به کاهش آن اقدام نمود. در این حالت راندمان حرارتی به طور چشمگیری افزایش می یابد.

۲) جلوگیری از تشکیل گاز So۳ (انیدرید سولفوریک) یا کاهش آن در اثر کاهش هوای اضافی از ۳۵ درصد به میزان ۱۰ درصد، که در این صورت میزان تبدیل گاز انیدرید سولفورو (SO۲) نصف می شود.

۳) افزایش نقطه ذوب رسوبات تشکیل شده در سطوح لوله ها، به طوری که در شرایط عملیاتی موجود این رسوبات به نقطه ذوب خود نرسند. این امر با افزودن ترکیبات منیزیم، به علت داشتن اختلاف پتانسیل شیمیایی زیاد و اورتووانادیم (۳MGO V۲ O۵) که دارای نقطه ذوب بالایی هستند (حدود ۱۱۲۰°C)، میسر می شود.

۴) مناسب ترین روش جلوگیری از خوردگی بواسطه وجود ناخالصی های موجود در سوخت مایع، استفاده از سوخت های گازی و بخصوص گاز طبیعی است که ضمن داشتن صرفه اقتصادی، با یک سرمایه گذاری اولیه به نسبت کم می توان مشکلات خوردگی ذکر شده را به شدت کاهش داد.

براساس برآورد اقتصادی انجام شده، تعویض سوخت مایع و جایگزینی آن با سوخت گاز طبیعی، پس از بیست ماه، بازگشت سرمایه گذاری را در پی خواهد داشت. در عین حال گاز طبیعی مشکلات ذکر شده مربوط به مصرف سوخت مایع و هم چنین عدم مصرف بخار به عنوان بخار پودر کننده کاهش قابل ملاحظه مسائل زیست محیطی را به همراه دارد. به واسطه مصرف سوخت مایع (تولید NOx، Sox) ، به اندازه تفاضل قیمت جهانی سوخت گاز مصرفی و سوخت مایع، که یا به فروش می رسد و یا به عنوان خوراک واحد RFCC مورد استفاده قرار می گیرد، سود عاید می کند.

● تجهیزات جانبی:

مهم ترین تجهیزات جانبی مورد استفاده در کوره ها را عموماً دوده زداها (SOOT BLOWERS) و آنالایزرها (O۲ ANALAYZER) یا اخیراً (CO۲ ANALYZER) تشکیل می دهند.

با استفاده روزانه از دوده زدا (یک بار در روز) در یک کوره ملاحظه شده که بلافاصله ۱۰°C دمای سیال خروجی از کوره افزایش می یابد، به عبارت دیگر به میزان همان ۱۰°C اضافی، سوخت مصرفی کوره کاهش می یابد. ضمن این که ترکیبات مضر و خطرناک که هم باعث مسائل خوردگی می شوند و هم انتقال حرارت را کاهش می دهند، از روی لوله ها زدوده می شوند. استفاده از سایر تجهیزات جانبی پیشگرمکن های هوا AIR PREHEATERS و لوازم بازیافت حرارتی از دودکش هاFORCED AND INDUCED FANS، و یا ECONOMIZER در دیگ های بخار باعث کاهش سوخت مصرفی و در نتیجه کاهش مشکلات ایجاد شده در کوره ها و دیگ های بخار می شود.

خوردگی

خوردگی، زیان ها و روش های کنترل آن

یکی از مهمترین عوامل تخریب تجهیزات صنعتی، پدیدهٔ خوردگی است که به عنوان یکی از زیانبارترین آفت های صنایع مطرح می گردد. این زیان ها به حدی اهمیت دارد که تحقیق در حوزه های مربوط به فناوری های کنترل خوردگی، بخش عظیمی از پژوهش ها و تحقیقات کشورهای پیشرفته را به خود اختصاص داده است. این مطالعات به تدوین استراتژی ها, قوانین، آیین­نامهها و روشهای مؤثری در زمینهٔ پیشگیری و رفع اثرات خوردگی منجر شده که تحت عنوان "مدیریت خوردگی" مورد مطالعه قرار می گیرند. در کشور ما نیز به دلیل جایگیری صنایع نفت، گاز و پتروشیمی، در مناطق مستعد پدیدهٔ خوردگی, بررسی این پدیده و مدیریت آن، از اهمیت فوق العاده ای برخوردار می باشد:


خوردگی، فرآیندی طبیعی است که فلزات را مورد حمله قرار می دهد. از آنجایی که فلزات، مصرف گسترده ای در جهان امروزی دارند، خوردگی تبدیل به پدیده ای شده که اطراف ما را احاطه کرده است. وسایل خانه، اتومبیل، تجهیزات صنعتی و لوله های نفت و گاز مورد حمله خوردگی قرار می گیرند و این پدیده ضررهای مالی فراوانی را موجب می گردد.

به عنوان مثال, مسالهٔ خوردگی در کشور کانادا در فاصله زمانی ۱۹۷۷ تا ۱۹۹۶، ۱۰ بار باعث نشتی خطوط لوله و ۱۲ بار باعث انفجار گردیده که از جهاتی اهمیت این موضوع را تا حدی آشکار می سازد. گزارشات خرابی های حاصل از خوردگی نشان می دهد که علل وقوع این پدیده عمدتاً بر اثر کوتاهی های مصیبت بار در لوله کشی ها و ساخت و نصب تجهیزات می باشد که منجر به انفجار، آتش گرفتن و منتشرشدن مواد سمی در محیط زیست می گردد. علاوه بر آن مخارجی نظیر، جایگزین کردن تجهیزات خورده شده، تعطیلی و خاموشی واحدها به دلیل جایگزینی تجهیزات خورده شده، ایجاد اختلال در فرآیندها به دلیل خوردگی تجهیزات و عدم خلوص محصولات فرایندی به دلیل نشت ناشی از خوردگی در اتلاف محصولات مخزن هایی که مورد حمله خوردگی قرار می گیرند، از مهمترین هزینه ها و زیان های حاصل از خوردگی می باشد.

ضرر سالانهٔ اثرات خوردگی در ایالات متحده و اروپا حدود ۳.۱ درصد تولید ناخالص داخلی برآورد می گردد که طبق آمار، خسارات خوردگی که طی ۲۲ سال گذشته در صنایع آمریکا رخ داده، چیزی حدود ۳۸۰ میلیارد دلار می باشد. میانگین سالانه این خسارت ها حدود ۱۷ میلیارد دلار است که از کل هزینهٔ سوانح طبیعی از قبیل زلزله، سیل و آتش سوزی در این کشور بیشتر می باشد.

از هزینه های فوق الذکر (۳۸۰ میلیارد دلار)، ۷ میلیارد دلار سهم لوله های انتقال مایعات و گازها، ۹.۴۷ میلیارد دلار هزینهٔ خوردگی در واحدهای فراورش و ۶.۸ میلیارد دلار متعلق به صنایع پالایشگاهی و مجتمع های گاز و پتروشیمی می باشد. همچنین بنابر آمار ارائه شده ۱۵ تا ۲۰ درصد از نشتی ها در تاسیسات صنعت نفت به دلیل خوردگی می باشد.

پژوهش ها نشان می دهد با رعایت ضوابط و اصول مربوطه می توان از ۷۰ درصد این خسارت ها جلوگیری کرد. طبق گزارش انستیتو باتل با اعمال سادهٔ دانش و تکنولوژی موجود، از یک سوم هزینه های خوردگی صنایع جلوگیری به عمل می آید. نکتهٔ دیگری که غالباً مورد غفلت قرار می گیرد این است که خسارات غیرمستقیم خوردگی در برخی موارد به مراتب بیشتر از خسارات مستقیم آن می باشد. به عنوان نمونه، تعویض پروانهٔ پمپ سانتریفوژ نه تنها هزینه ای برای تعمیر خود قطعه ایجاد می کند، بلکه قطع جریان در فرآیند، باز و بسته شدن پمپ و هزینه دستمزد را نیز به دنبال دارد.

در کنار این خسارات، هدررفتگی و تضییع مواد و آلودگی های ناشی از آن که در نتیجه خوردگی به وجود می آید، باعث بروز نتایج وخیمی در رابطه با ایمنی و محیط زیست می گردد.

تحلیل داده های حاصل از ضایعات هیدروکربن ها نشان می دهد که خوردگی به لحاظ آماری دومین عامل ایجاد این هدررفتگی می باشد. اهمیت موارد ذکرشده به حدی است که در قوانین فدرال ایالات متحده، بر لزوم نصب و ارائه راهکارهای کنترل خوردگی به وسیله متصدیان خطوط لوله تاکید گردیده و عدم پیروی از این قوانین مشمول مجازات های مدنی و جنایی شده است. همچنین در سایر صنایع از جمله نفت، گاز و پتروشیمی نیز راهکارهای علمی، تکنولوژیکی و حقوقی جهت جلوگیری از خطرات و هزینه های خوردگی در دست مطالعه و تصویب می باشد.

پیشگویی آهنگ خرابی تجهیزات در اثر خوردگی و تخمین هزینه های آن عنصری نامعین است که می توان با استفاده از سیسستم های مدیریت خوردگی تا حدودی آن را کنترل نمود. مدیریت خوردگی با هدف صیانت از سرمایه، مسئولیت کنترل خوردگی و روش های پایش و حفاظت تاسیسات در تمامی جنبه ها را جهت پایداری و پویایی به عهده دارد و همواره از ابزار و روش های پیشرفته در رسیدن به این مقصود بهره می گیرد.

به وسیلهٔ مدیریت خوردگی، فرآیند خوردگی از ابتدای مرحله طراحی تاسیسات تا هنگام سرویس دهی آنها به صورت فعال مدیریت می گردد. به عنوان مثال یک مهندس طراح، از طریق این مدیریت از اطلاعات لازم در زمینهٔ خوردگی برخوردار می گردد تا سازه هایی را با عمر مفید و طولانی طراحی نماید یا با استفاده از اطلاعات به دست آمده از خوردگی های رخ داده در طراحی های پیشین، مراحل بعدی کار را اصلاح کند.

مدیریت خوردگی به ارائه استراتژی های پیش گیرانه و برداشتن گام های راهبردی در دو حوزهٔ فنی و غیرفنی می پردازد. سر فصل­هایی که در حوزه های غیر فنی به عنوان استراتژی های پیش گیرانه دنبال میشود به شرح زیر می باشد:

۱) افزایش آگاهی از هزینه های هنگفت خوردگی و صرفه جویی در این هزینه ها موجب به کارگیری صحیح فناوری های موجود و کاهش هزینه ها می گردد. از اینرو, بسیاری از مشکلات خوردگی در نتیجه فقدان آگاهی از مدیریت خوردگی و مسئولیت پذیری اشخاص در تبادل عملیات، بازرسی، تعمیر و نگهداشت سیستم مهندسی می باشد.

۲) تغییر خط مشی ها، آیین نامه ها، استانداردها و شیوه های مدیریتی جهت کاهش هزینه های خوردگی به واسطه مدیریت صحیح خوردگی که به کنترل مؤثر آن می انجامد و باعث اجرای ایمن تر و قابل اعتما دتر عملیات و افزایش عمر مفید تاسیسات و تجهیزات می شود.

۳) اصلاح و تعمیم آموزش کارکنان جهت معرفی و بازشناسی کنترل خوردگی که مستلزم وارد نمودن واحدهای درسی پیشگیری و کنترل خوردگی در برنامه های تحصیلی و مدیریتی می باشد.

۴) تغییر و اصلاح کژاندیشی و باور غلط تسلیم پذیری در مقابل خوردگی و اتخاذ تصمیم های جدید در راستای جلوگیری از این پدیده.

▪ همچنین استراتژی های پیش گیرانه در حوزه های فنی نیز از اهمیت بالایی برخوردار می باشند، برخی از این استراتژی ها بدین ترتیب می باشد:

۱) ارتقای روش های طراحی و استفاده از روش های طراحی پیشرفته به منظور مدیریت بهتر خوردگی که مانع از بروز هزینه های خوردگی قابل اجتناب می گردد. برای تحقق این راهبرد لازم است روش های طراحی تغییر کند و بهترین فناوری های خوردگی در دسترس طراحان قرار گیرد. میزان عملکرد خوردگی نیز در معیار طراحی وارد شده و هزینه طول عمر تجهیزات تجزیه و تحلیل گردد.

۲) ارتقای روش های پیش بینی عمر تجهیزات و ارزیابی عملکرد آنها از طریق آشنایی با فناوری های خوردگی جدید.

۳) بهبود فناوری های خوردگی از طریق تحقیق و توسعه.

می توان با استفاده از مدیریت خوردگی و بهکارگیری روش های علمی و دستاوردهای جدید تکنولوژی، خوردگی را در بسیاری از صنایع کشور کنترل نمود. این امر مستلزم ایجاد آگاهی و عزم جدی برای پیش گیری و کنترل خوردگی در میان مدیران و کارشناسان می باشد.

نتیجه:

با توجه به گستردگی و شرایط خاص جغرافیایی منطقه ای که بخش اعظم تاسیسات نفت و گاز کشور در آن قرار دارد، مسئله خوردگی در صنعت نفت ایران از اهمیت خاصی برخوردار می باشد. اعمال درست و دقیق مدیریت خوردگی و استفاده از تکنولوژی های جدید در این حوزه می تواند از بروز سالانه میلیون ها دلار خسارت به این مراکز جلوگیری کند.

اهمیت مسئله خوردگی در صنعت نفت جنبه دیگری نیز دارد؛ تاسیسات نفتی، گازی و پتروشیمیایی کشور در حال توسعه است و لحاظ قواعد مدیریت خوردگی در طراحی و ساخت کارخانجات و تجهیزات مورد استفاده می تواند از بروز خسارات هنگفتی در آینده جلوگیری کند.

با وجود اهمیت این مسئله، به نظر می رسد قواعد و قوانین مدیریت خوردگی و استفاده از تکنولوژی های روز جهت افزایش مقاومت در برابر خوردگی هنوز جای خود را در فعالیت های اجرایی به شایستگی باز نکرده است و مورد اهتمام جدی قرار نمی گیرد. بررسی ابعاد این موضوع و اهمیت آن یکی از اقدامات اساسی برای گشودن جایگاه شایسته این پدیده در برنامه ریزی فعالیت های اجرایی است. شناخت اهمیت این مسئله و استراتژی بنگاههای توسعهیافته در این زمینه، میتواند سرفصلی برای حرکت در مسیر رشد تکنولوژی و دانشمدیریت خوردگی باشد.